人教版数学八年级上册专项培优练习三《角平分线的性质》(含答案)
展开一、选择题
1.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为( )
A.PN<3 B.PN>3 C.PN≥3 D.PN≤3
2.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P( )
A.有且只有1个 B.有且只有2个
C.组成∠E的角平分线 D.组成∠E的角平分线所在的直线(E点除外)
3.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
A.8 B.6 C.4 D.2
4.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是( )
A.7 B.6 C.5 D.4
5.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是( )
A.PM>PN B.PM<PN C.PM=PN D.不能确定
6.如图,在四边形ABCD中,AC平分∠BAD,AB>AD,下列结论正确的是( )
A.AB-AD>CB-CD B.AB-AD=CB-CD
C.AB-CD
A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°
8.如图,已知点P到AE、AD、BC的距离相等,下列说法:
①点P在∠BAC的平分线上;
②点P在∠CBE的平分线上;
③点P在∠BCD的平分线上;
④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.
其中正确的是( )
A.①②③④ B.①②③ C.④ D.②③
9.如图,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°.
则下面结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC.
其中正确结论个数是( )
A.1个 B.2个 C.3个 D.4个
10.如图,在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB于E.
则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
11.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )
A.10 B.8 C.6 D.4
12.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.
下列结论:
①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.
其中正确的有( ) 个.
A.1 B.2 C.3 D.4
二、填空题
13.如图,△ABC的∠ABC的外角平分线BD与∠ACB的外角平分线CE相交于点P,若点P到AC的距离为4,则点P到AB的距离为 .
14.如图所示,△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,AB=8cm,BC=6cm,S△ABC=14cm2,则DE的长是 cm.
15.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为 .
16.直线 l1、l2、l3 表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有 处.
17.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为 .
18.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC= .
三、解答题
19.如图,在△ABC中,点O是∠ABC、∠ACB平分线的交点,AB+BC+AC=20,过O作OD⊥BC于D点,且OD=3,求△ABC的面积.
20.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.
21.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.
(1)若∠ABE=60°,求∠CDA的度数.
(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.
22.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.
求证:∠A+∠C=180°.
23.已知射线AP是△ABC的外角平分线,连结PB、PC.
(1)如图1,若BP平分∠ABC,且∠ACB=30°,直接写出∠APB= .
(2)如图1,若P与A不重合,求证:AB+AC<PB+PC.
24.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB和∠CAP的度数.
25.如图,△ABC和△AED为等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,连接BE、CD交于点O,连接AO
求证:
(1)△BAE≌△CAD;
(2)OA平分∠BOD.
参考答案
1.C
2.D
3.C
4.D
5.C
6.A
7.B
8.A
9.C
10.C
11.C
12.C
13.答案为:4;
14.答案为:2.
15.答案为:4;
16.答案为:4.
17.答案为:4.
18.答案为:96°.
19.解:如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.
∵点O是∠ABC,∠ACB平分线的交点,
∴OE=OD,OF=OD,即OE=OF=OD=3,
∴S△ABC=S△ABO+S△BCO+S△ACO=eq \f(1,2)AB•OE+eq \f(1,2)BC•OD+eq \f(1,2)AC•OF
=eq \f(1,2)×2×(AB+BC+AC)=eq \f(1,2)×3×20=30.
20.解:连接DB.
∵点D在BC的垂直平分线上,
∴DB=DC;
∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,
∴DE=DF;
∵∠DFC=∠DEB=90°,
在Rt△DCF和Rt△DBE中,
DB=DC,DE=DF.
∴Rt△DCF≌Rt△DBE(HL),
∴CF=BE(全等三角形的对应边相等).
21.解:(1)∵AC平分∠BCD,AE⊥BC AF⊥CD,
∴AE=AF,
在Rt△ABE和Rt△ADF中,AE=AF,AB=AD.
∴Rt△ABE≌Rt△ADF,
∴∠ADF=∠ABE=60°,
∴∠CDA=180°﹣∠ADF=120°;
(2)由(1)知:Rt△ABE≌Rt△ADF,
∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,
∴BC=CE+BE=6,
∴四边形AECD的面积=△ABC的面积+△ACD的面积=10.
22.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,
∵BD平分∠ABC,
∴DE=DF,∠DEC=∠F=90°,
在RtCDE和Rt△ADF中,
,
∴Rt△CDE≌Rt△ADF(HL),
∴∠FAD=∠C,
∴∠BAD+∠C=∠BAD+∠FAD=180°.
23.解:(1)∵∠DAC=∠ABC+∠ACB,∠1=∠2+∠APB,
∵AE平分∠DAC,PB平分∠ABC,
∴∠1=eq \f(1,2)∠DAC,∠2=eq \f(1,2)∠ABC,
∴∠APB=∠1﹣∠2=eq \f(1,2)∠DAC﹣eq \f(1,2)∠ABC=eq \f(1,2)∠ACB=15°,
故答案为:15°;
(2)在射线AD上取一点H,是的AH=AC,连接PH.则△APH≌△APC,
∴PC=PD,
在△BPH中,PB+PH>BH,
∴PB+PC>AB+AC.
24.解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
∵PA=PA,PM=PF,
∴Rt△PFA≌Rt△PMA(HL),
∴∠FAP=∠PAC=50°.
25.证明:(1)过点A分别作AF⊥BE于F,AG⊥CD于G.
如图所示:
∵∠BAC=∠DAE,
∴∠BAE=∠CAD,
在△BAE和△CAD中,
,
∴△BAE≌△CAD(SAS),
(2)连接AO并延长交CE为点H,
∵△BAE≌△CAD,
∴BE=CD,
∴AF=AG,
∵AF⊥BE于F,AG⊥CD于G,
∴OA平分∠BOD,
∴∠AOD=∠AOB,
∵∠COH=∠AOD,∠EOH=∠AOB,
∴∠COH=∠EOH.
∴OA平分∠BOD.
初中第十二章 全等三角形12.3 角的平分线的性质同步达标检测题: 这是一份初中<a href="/sx/tb_c10245_t7/?tag_id=28" target="_blank">第十二章 全等三角形12.3 角的平分线的性质同步达标检测题</a>,文件包含2024年中考道德与法治一轮复习知识清单全国通用-专题07角平分线的性质与判定专项培优训练教师版docx、2024年中考道德与法治一轮复习知识清单全国通用-专题07角平分线的性质与判定专项培优训练学生版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
人教版数学九年级上册专项培优练习三《一元二次方程实际应用》(含答案): 这是一份人教版数学九年级上册专项培优练习三《一元二次方程实际应用》(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学八年级上册专项培优练习十一《分式方程》(含答案): 这是一份人教版数学八年级上册专项培优练习十一《分式方程》(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。