终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年湖南省长沙市雨花区中雅培萃学校九年级(上)第一次入学数学试卷(含解析)

    立即下载
    加入资料篮
    2022-2023学年湖南省长沙市雨花区中雅培萃学校九年级(上)第一次入学数学试卷(含解析)第1页
    2022-2023学年湖南省长沙市雨花区中雅培萃学校九年级(上)第一次入学数学试卷(含解析)第2页
    2022-2023学年湖南省长沙市雨花区中雅培萃学校九年级(上)第一次入学数学试卷(含解析)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年湖南省长沙市雨花区中雅培萃学校九年级(上)第一次入学数学试卷(含解析)

    展开

    这是一份2022-2023学年湖南省长沙市雨花区中雅培萃学校九年级(上)第一次入学数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2022-2023学年湖南省长沙市雨花区中雅培萃学校九年级(上)第一次入学数学试卷  I卷(选择题) 一、选择题(本大题共10小题,共40分。在每小题列出的选项中,选出符合题目的一项)把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是(    )
     A.  B.  C.  D. 下列图形中,是中心对称图形的是(    )A.  B.
    C.  D. 如图,关于点成中心对称,则下列结论不成立的是(    )
    A. 与点是对称点 B.
    C.  D. 在如图的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心可能是(    )A.
    B.
    C.
    D. 如图,在平面内将绕着直角顶点逆时针旋转得到,若则线段的长为(    )A.
    B.
    C.
    D. 已知点关于原点的对称点在第四象限,则的取值范围在数轴上表示正确的是(    )A.  B.  C.  D. 如图,将绕点旋转得到,点的坐标为,则点的坐标为(    )A.
    B.
    C.
    D.
     如图,在等边中,为边上一点,连接,将绕点逆时针旋转,得到,连接,若,则的周长是(    )
     A.  B.  C.  D. 不确定已知经过点的二次函数的图象如图所示,有以下结论:其中正确结论的个数是(    )
     A.  B.  C.  D. 如图,点是等边三角形内一点,且,则的度数是(    )
     A.  B.  C.  D. II卷(非选择题) 二、填空题(本大题共6小题,共24分)在平面直角坐标系中,点关于原点对称的点的坐标是______已知菱形的周长为,其中一条对角线长为,则该菱形的另一条对角线长为______在平面直角坐标中,已知点,将点绕原点顺时针旋转得到点,则点的坐标为______如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则的度数为______
     如图,正方形的边长为是边上的一点,且是对角线上的一动点,连接,当点上运动时,周长的最小值是______
     抛物线关于原点对称的抛物线的解析式为______ 三、解答题(本大题共4小题,共36分。解答应写出文字说明,证明过程或演算步骤)本小题
    计算题:本小题
    先化简,再求值:其中本小题
    如图,在平面直角坐标系中,三个顶点的坐标分别是
    作出关于点对称的图形
    以点为旋转中心,将顺时针旋转,得到,在坐标系中画出
    若将向左平移个单位,求扫过的面积.
    本小题
    已知:正方形中,绕点顺时针旋转,它的两边分别交或它们的延长线于点
    绕点旋转到如图时,求证:
    绕点旋转到如图的位置时,猜想线段之间又有怎样的数量关系呢?请直接写出你的猜想.不需要证明
     

    答案和解析 1.【答案】 【解析】解:五角星可以被中心发出的射线分成个全等的部分,
    因而旋转的角度是
    故选:
    根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
    此题主要考查了旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.
     2.【答案】 【解析】解:选项A都不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形.
    选项B能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形.
    故选:
    根据中心对称图形的概念判断.把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转度后与自身重合.
     3.【答案】 【解析】解:关于点成中心对称,
    是一组对称点,
    都不合题意.
    不是对应角,
    不成立.
    故选:
    根据中心对称的性质判断即可.
    本题考查中心对称的性质,掌握中心对称的性质是求解本题的关键.
     4.【答案】 【解析】【分析】
    本题考查了学生的理解能力和观察图形的能力,重点掌握旋转的性质,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.
    连接,分别作的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.
    【解答】
    解:绕某点旋转一定的角度,得到
    连接

    的垂直平分线过
    的垂直平分线过
    的垂直平分线过
    三条线段的垂直平分线正好都过
    即旋转中心是
    故选:  5.【答案】 【解析】解:为直角三角形,

    绕着直角顶点逆时针旋转得到


    故选:
    由勾股定理可得,由旋转的性质可得,即可求解.
    本题考查旋转的性质,勾股定理,解题的关键是明确旋转前后对应边相等.
     6.【答案】 【解析】解:关于原点的对称点在第四象限,
    在第二象限,

    解得:
    故选D
    根据点所在象限确定范围.
    本题考查点的坐标的符号,利用对称性确定点所在象限是求解本题的关键.
     7.【答案】 【解析】解:设的坐标为
    关于点对称.

    解得
    的坐标
    故选:
    的坐标为,由于关于点对称,则,解得即可.
    本题考查中心对称的性质,要根据中心对称的性质,且弄清中心对称的点的坐标特征.
     8.【答案】 【解析】解:绕点逆时针旋转,得到


    是等边三角形,

    的周长
    故选:
    由旋转的性质可得,可得是等边三角形,可得,即可求解.
    本题考查了旋转的性质,等边三角形的判定和性质,掌握旋转的性质是解题的关键.
     9.【答案】 【解析】解:由图可知,抛物线对称轴是直线
    ,即
    抛物线开口向下,

    抛物线与轴交于正半轴,

    ,故错误;
    由图可得,抛物线上的点下方,
    ,故正确;
    抛物线对称轴是直线
    时,函数值相等,

    ,故正确;

    错误;

    ,即,故正确;
    正确的有,共个,
    故选:
    根据二次函数的图象和性质依次判断即可.
    本题考查二次函数的图象与系数的关系,解题的关键是掌握二次函数的图象和性质.
     10.【答案】 【解析】解:为等边三角形,

    如图,将绕点逆时针旋转,连接


    为等边三角形,

    中,

    为直角三角形,且

    故选:
    根据旋转的性质得,则为等边三角形,得到,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数
    本题考查了旋转的性质,等边三角形的性质,勾股定理的逆定理,添加恰当辅助线构造全等三角形是解题的关键.
     11.【答案】 【解析】解:在平面直角坐标系中,点关于原点对称的点的坐标是
    故答案为:
    直接利用关于原点对称点的性质关于原点对称的点,横坐标与纵坐标都互为相反数得出答案.
    此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.
     12.【答案】 【解析】解:如图,

    四边形是菱形,



    故答案为:
    由菱形的性质可得,由勾股定理可求的长,即可求解.
    本题考查了菱形的性质,勾股定理,掌握菱形的性质是解题的关键.
     13.【答案】 【解析】解:如图,点的坐标为
    故答案为:

    利用旋转变换的性质正确作出图形,可得结论.
    本题考查坐标与图形变化旋转,解题的关键是正确作出图形,利用图象法解决问题即可.
     14.【答案】 【解析】解:

    绕点旋转到的位置


    故答案为:
    由旋转的性质可得,由等腰三角形的性质可求,即可求解.
    本题考查了旋转的性质,平行线的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.
     15.【答案】 【解析】解:连接交于点,连接,则此时的周长就是周长的最小值,



    周长的最小值是
    故答案为:
    根据两点之间线段最短和点和点关于对称,即可求得周长的最小值,本题得以解决.
    本题考查轴对称最短路线问题、正方形的性质,解答本题的关键是根据点和点关于对称,将转化为,由求得周长的最小值.
     16.【答案】 【解析】解:关于原点对称的点的横纵坐标互为相反数,
    抛物线关于原点对称的抛物线的解析式为:

    故答案为:
    根据关于原点对称的点的坐标特点进行解答即可.
    本题考查的是二次函数的图象与几何变换,熟知关于原点对称的点的坐标特点是解答此题的关键.
     17.【答案】解:原式

     【解析】利用算术平方根的意义,负整数指数幂的意义,零指数幂的意义和绝对值的意义化简运算即可.
    本题主要考查了实数的运算,算术平方根的意义,负整数指数幂的意义,零指数幂的意义和绝对值的意义,正确利用上述法则与性质解答是解题的关键.
     18.【答案】解:



    时,原式 【解析】先算括号里,再算括号外,然后把代入化简后的式子进行计算即可解答.
    本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.
     19.【答案】解:如图,即为所求作.
    如图,即为所求作.
    扫过的面积
     【解析】别作出的对应点即可.
    分别作出的对应点即可.
    扫过的面积可以看成平行四边形的面积与三角形的面积和.
    本题考查作图旋转变换,平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
     20.【答案】解:猜想:
    证明如下:
    如图,在的延长线上,截取,连接

    中,












    证明如下:
    如图,在上截取,连接

    中,


    ,即


    中,



     【解析】的延长线上,截取,连接,则可证明,可得到,进一步可证明,可得结论
    上截取,连接,可先证明,进一步可证明,可得到,从而可得到
    本题考查了正方形的性质、全等三角形的判定和性质、垂直平分线的判定和性质,正确的作出辅助线构造三角形全等是解题的关键.
     

    相关试卷

    2022-2023学年湖南省长沙市雨花区中雅培萃学校八年级(下)第一次月考数学试卷(含解析):

    这是一份2022-2023学年湖南省长沙市雨花区中雅培萃学校八年级(下)第一次月考数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年湖南省长沙市雨花区中雅培萃学校七年级(上)第一次月考数学试卷(含解析):

    这是一份2023-2024学年湖南省长沙市雨花区中雅培萃学校七年级(上)第一次月考数学试卷(含解析),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省长沙市中雅培萃学校中考二模数学试题(含解析):

    这是一份2023年湖南省长沙市中雅培萃学校中考二模数学试题(含解析),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map