所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
甘肃省兰州市三年(2020-2022)中考数学真题分类汇编-解答题(提升题)
展开
这是一份甘肃省兰州市三年(2020-2022)中考数学真题分类汇编-解答题(提升题),共41页。试卷主要包含了解方程,,A,F两点间的距离为ycm,是第一象限内一点,给出如下定义,,点P为x轴上一动点,综合与实践等内容,欢迎下载使用。
甘肃省兰州市三年(2020-2022)中考数学真题分类汇编-解答题(提升题)
一.解一元二次方程-配方法(共1小题)
1.(2021•兰州)解方程:x2﹣6x﹣1=0.
二.动点问题的函数图象(共1小题)
2.(2021•兰州)在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,将∠BAC绕点A顺时针旋转,角的两边分别交射线BC于D,E两点,F为AE上一点,连接CF,且∠ACF=∠B(当点B,D重合时,点C,F也重合).设B,D两点间的距离为xcm(0≤x≤8),A,F两点间的距离为ycm.
小刚根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.
下面是小刚的探究过程,请补充完整.
(1)列表:下表的已知数据是根据B,D两点间的距离x进行取点,画图,测量分别得到了x与y的几组对应值;
x/cm
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
6
7
8
y/cm
6.00
5.76
5.53
5.31
5.09
4.88
4.69
4.50
4.33
4.17
4.02
3.79
3.65
a
请你通过计算补全表格:a= ;
(2)描点、连线:在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;
(3)探究性质:随着自变量x的不断增大,函数y的变化趋势: ;
(4)解决问题:当AF=CD时,BD的长度大约是 cm.(结果保留两位小数)
三.一次函数综合题(共1小题)
3.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.
(1)求点P(6,2)的“倾斜系数”k的值;
(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;
②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;
(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<,请直接写出a的取值范围.
四.反比例函数与一次函数的交点问题(共2小题)
4.(2021•兰州)如图,一次函数y=﹣x+b与反比例函数y=﹣(x>0)的图象分别交于点A(﹣2,m),B(4,n),与y轴交于点C,连接OA,OB.
(1)求一次函数y=﹣x+b和反比例函数y=(x>0)的表达式;
(2)求△AOB的面积.
5.(2021•兰州)如图,一次函数y=﹣x+b与反比例函数y=﹣(x<0),y=(x>0)图象分别交于A(﹣2,m),B(4,n),与y轴交于点C,连接OA,OB.
(1)求反比例函数y=(x>0)和一次函数y=﹣x+b的表达式;
(2)求△AOB的面积.
五.二次函数的应用(共1小题)
6.(2022•兰州)掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为m,当水平距离为3m时,实心球行进至最高点3m处.
(1)求y关于x的函数表达式;
(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.
图1来源:《2022年兰州市高中阶段学校招生体育考试规则与测试要求》
六.二次函数综合题(共3小题)
7.(2022•兰州)如图,在Rt△ABC中,∠ACB=90°,AC=3cm,BC=4cm,M为AB边上一动点,BN⊥CM,垂足为N.设A,M两点间的距离为xcm(0≤x≤5),B,N两点间的距离为ycm(当点M和B点重合时,B,N两点间的距离为0).
小明根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整.
(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:
x/cm
0
0.5
1
1.5
1.8
2
2.5
3
3.5
4
4.5
5
y/cm
4
3.96
3.79
3.47
a
2.99
2.40
1.79
1.23
0.74
0.33
0
请你通过计算,补全表格:a= ;
(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;
(3)探究性质:随着自变量x的不断增大,函数y的变化趋势: ;
(4)解决问题:当BN=2AM时,AM的长度大约是 cm.(结果保留两位小数)
8.(2021•兰州)如图1,二次函数y=a(x+3)(x﹣4)图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.
(1)求二次函数y=a(x+3)(x﹣4)的表达式;
(2)过点P作PQ⊥x轴分别交线段AB,抛物线于点Q,C,连接AC.当OP=1时,求△ACQ的面积;
(3)如图2,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.
9.(2021•兰州)如图1,二次函数y=a(x+3)(x﹣4)的图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.
(1)求二次函数y=a(x+3)(x﹣4)的表达式;
(2)过点P作PQ⊥x轴分别交线段AB,抛物线于点Q,C,连接AC.当OP=1时,求△ACQ的面积;
(3)如图2,将线段PB绕点P逆时针旋转90°得到线段PD.
①当点D在抛物线上时,求点D的坐标;
②点E(2,﹣)在抛物线上,连接PE,当PE平分∠BPD时,直接写出点P的坐标.
七.四边形综合题(共3小题)
10.(2022•兰州)综合与实践
【问题情境】
数学活动课上,老师出示了一个问题:如图1,在正方形ABCD中,E是BC的中点,AE⊥EP,EP与正方形的外角∠DCG的平分线交于P点.试猜想AE与EP的数量关系,并加以证明;
【思考尝试】
(1)同学们发现,取AB的中点F,连接EF可以解决这个问题.请在图1中补全图形,解答老师提出的问题.
【实践探究】
(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接CP,可以求出∠DCP的大小,请你思考并解答这个问题.
【拓展迁移】
(3)突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接DP.知道正方形的边长时,可以求出△ADP周长的最小值.当AB=4时,请你求出△ADP周长的最小值.
11.(2021•兰州)已知正方形ABCD,E,F为平面内两点.
【探究建模】
(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;
【类比应用】
(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.
①(1)中的结论AE=CF还成立吗?请说明理由;
②猜想并证明线段AE,CE,DE之间的数量关系.
12.(2021•兰州)已知正方形ABCD,E,F为平面内两点.
【探究建模】
(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;
【类比应用】
(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.猜想并证明线段AE,CE,DE之间的数量关系;
【拓展迁移】
(3)如图3,当点E在正方形ABCD外部时,AE⊥EC,AE⊥AF,DE⊥BE,且D,F,E三点共线,DE与AB交于G点.若DF=3,AE=,求CE的长.
八.切线的判定与性质(共2小题)
13.(2022•兰州)如图,⊙O是△ABC的外接圆,AB是直径,OD⊥OC,连接AD,∠ADO=∠BOC,AC与OD相交于点E.
(1)求证:AD是⊙O的切线;
(2)若tan∠OAC=,AD=,求⊙O的半径.
14.(2021•兰州)如图,△ABC内接于⊙O,AB是⊙O的直径,E为AB上一点,BE=BC,延长CE交AD于点D,AD=AC.
(1)求证:AD是⊙O的切线;
(2)若tan∠ACE=,OE=3,求BC的长.
九.圆的综合题(共1小题)
15.(2022•兰州)综合与实践
问题情境:我国东周到汉代一些出土实物上反映出一些几何作图方法,如侯马铸铜遗址出土车軎(wèi)范、芯组成的铸型(如图1),它的端面是圆形.如图2是用“矩”(带直角的角尺)确定端面圆心的方法:将“矩”的直角尖端A沿圆周移动,直到AB=AC,在圆上标记A,B,C三点;将“矩”向右旋转,使它左侧边落在A,B点上,“矩”的另一条边与的交点标记为D点,这样就用“矩”确定了圆上等距离的A,B,C,D四点,连接AD,BC相交于点O,即O为圆心.
问题解决:(1)请你根据“问题情境”中提供的方法,用三角板还原我国古代几何作图确定圆心O.如图3,点A,B,C在⊙O上,AB⊥AC,且AB=AC,请作出圆心O.(保留作图痕迹,不写作法)
类比迁移:(2)小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB和AC不相等,用三角板也可以确定圆心O.如图4,点A,B,C在⊙O上,AB⊥AC,请作出圆心O.(保留作图痕迹,不写作法)
拓展探究:(3)小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图的方法确定圆心可以减少误差.如图5,点A,B,C是⊙O上任意三点,请用不带刻度的直尺和圆规作出圆心O.(保留作图痕迹,不写作法)请写出你确定圆心的理由: .
一十.解直角三角形的应用-仰角俯角问题(共1小题)
16.(2022•兰州)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得∠ADC=31°,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得∠AFC=42°.求凉亭AB的高度.(A,C,B三点共线,AB⊥BE,AC⊥CD,CD=BE,BC=DE.结果精确到0.1m)
(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
甘肃省兰州市三年(2020-2022)中考数学真题分类汇编-解答题(提升题)
参考答案与试题解析
一.解一元二次方程-配方法(共1小题)
1.(2021•兰州)解方程:x2﹣6x﹣1=0.
【解答】解:x2﹣6x﹣1=0,
移项得:x2﹣6x=1,
配方得:x2﹣6x+9=10,即(x﹣3)2=10,
开方得:x﹣3=±,
则x1=3+,x2=3﹣.
二.动点问题的函数图象(共1小题)
2.(2021•兰州)在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,将∠BAC绕点A顺时针旋转,角的两边分别交射线BC于D,E两点,F为AE上一点,连接CF,且∠ACF=∠B(当点B,D重合时,点C,F也重合).设B,D两点间的距离为xcm(0≤x≤8),A,F两点间的距离为ycm.
小刚根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.
下面是小刚的探究过程,请补充完整.
(1)列表:下表的已知数据是根据B,D两点间的距离x进行取点,画图,测量分别得到了x与y的几组对应值;
x/cm
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
6
7
8
y/cm
6.00
5.76
5.53
5.31
5.09
4.88
4.69
4.50
4.33
4.17
4.02
3.79
3.65
a
请你通过计算补全表格:a= 3.6 ;
(2)描点、连线:在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;
(3)探究性质:随着自变量x的不断增大,函数y的变化趋势: y的值逐渐减小 ;
(4)解决问题:当AF=CD时,BD的长度大约是 3.50 cm.(结果保留两位小数)
【解答】解:(1)如图1中,连接DF.
∵∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵∠ADC=∠B+∠BAD,∠CFE=∠ACF+∠CAF,∠ACF=∠B,
∴∠CFE=∠ADC,
∴A,F,C,D四点共圆,
∴∠AFD=∠ACD=90°,
当BD=8时,如图2中,
在Rt△ACB中,AC=6cm,BC=8cm,
∴AB===10(cm),
∵cos∠CAF=cos∠CAB,
∴=,
∴AF===3.6(cm),
∴a=3.6,
解法二:当BD=8时,C与D重合,
∵∠CAF=∠CAB,∠ACF=∠B,
∴△ACF∽△ABC,
∴=,
∴AF=3.6.
故答案为:3.6.
(2)函数图象如图所示:
(3)随着自变量x的不断增大,函数y的值逐渐减小.
故答案为:y的值逐渐减小.
(4)如图,因为直线CD的解析式为y=﹣x+8,
观察图象可知,当CD=AF时,x≈3.54,
∴BD≈3.50(cm),
故答案为:3.50.
三.一次函数综合题(共1小题)
3.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.
(1)求点P(6,2)的“倾斜系数”k的值;
(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;
②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;
(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<,请直接写出a的取值范围.
【解答】解:(1)由题意知,k==3,
即点P(6,2)的“倾斜系数”k的值为3;
(2)①∵点P(a,b)的“倾斜系数”k=2,
∴=2或=2,
即a=2b或b=2a,
∴a和b的数量关系为a=2b或b=2a;
②由①知,a=2b或b=2a
∵a+b=3,
∴或,
∴OP==;
(3)由题意知,满足条件的P点在直线y=x和直线y=x之间,
①当P点与D点重合时,且k=时,P点在直线y=x上,a有最小临界值,如图:
连接OD,延长DA交x轴于E,
此时=,
则,
解得a=,
此时B点的坐标为(,),
且k==
∴a>+1;
②当P点与B点重合时,且k=时,P点在直线y=x上,a有最小临界值,如图:
连接OB,延长CB交x轴于F,
此时=,
则=,
解得a=3+,
此时D(,),
且k==,
∴a>+3;
综上所述,若点P的“倾斜系数”k<,则a>+1.
四.反比例函数与一次函数的交点问题(共2小题)
4.(2021•兰州)如图,一次函数y=﹣x+b与反比例函数y=﹣(x>0)的图象分别交于点A(﹣2,m),B(4,n),与y轴交于点C,连接OA,OB.
(1)求一次函数y=﹣x+b和反比例函数y=(x>0)的表达式;
(2)求△AOB的面积.
【解答】解:(1)∵点A在反比例函数y=上,
∴﹣2m=﹣10,
解得m=5,
∴点A坐标为(﹣2,5).
把(﹣2,5)代入y=﹣x+b得5=1+b,
解得b=4,
∴一次函数表达式为y=x+4,
把B(4,n)代入y=x+4得n=﹣2+4=2,
∴点B坐标为(4,2),
∵点B在反比例函数y=图象上,
∴k=4×2=8,
∴反比例函数表达式为y=.
(2)把x=0代入y=x+4得y=4,
∴点C坐标为(0,4),
∴S△AOB=S△AOC+S△BOC=×4×2+×4×4=12.
5.(2021•兰州)如图,一次函数y=﹣x+b与反比例函数y=﹣(x<0),y=(x>0)图象分别交于A(﹣2,m),B(4,n),与y轴交于点C,连接OA,OB.
(1)求反比例函数y=(x>0)和一次函数y=﹣x+b的表达式;
(2)求△AOB的面积.
【解答】解:(1)∵点A(﹣2,m)在y=﹣的图象上,
∴m==5,
∴A(﹣2,5),
∵点A(﹣2,5)在y=﹣x+b上,
∴5=﹣×(﹣2)+b,
∴b=4,
∴一次函数的表达式为y=﹣x+4,
∵点B(4,n)在y=﹣x+4的图象上,
∴n=﹣×4=2,
∴B(4,2),
∵点B在y=的图象上,
∴k=4×2=8,
∴反比例函数的表达式为y=(x>0);
(2)∵直线y=﹣x+4与y轴交于C点,
∴当x=0时,y=4,
∴点C(0,4),
即OC=4,
∴S△AOB=S△AOC+S△BOC=OC•(|xA|+|xB|)=×4×(2+4)=12.
∴△AOB的面积为12.
五.二次函数的应用(共1小题)
6.(2022•兰州)掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为m,当水平距离为3m时,实心球行进至最高点3m处.
(1)求y关于x的函数表达式;
(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.
图1来源:《2022年兰州市高中阶段学校招生体育考试规则与测试要求》
【解答】解:(1)根据题意设y关于x的函数表达式为y=a(x﹣3)2+3,
把(0,)代入解析式得:=a(0﹣3)2+3,
解得:a=﹣,
∴y关于x的函数表达式为y=﹣(x﹣3)2+3;
(2)该女生在此项考试中是得满分,理由:
令y=0,则﹣(x﹣3)2+3=0,
解得:x1=7.5,x2=﹣1.5(舍去),
∵7.5>6.70,
∴该女生在此项考试中是得满分.
六.二次函数综合题(共3小题)
7.(2022•兰州)如图,在Rt△ABC中,∠ACB=90°,AC=3cm,BC=4cm,M为AB边上一动点,BN⊥CM,垂足为N.设A,M两点间的距离为xcm(0≤x≤5),B,N两点间的距离为ycm(当点M和B点重合时,B,N两点间的距离为0).
小明根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整.
(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:
x/cm
0
0.5
1
1.5
1.8
2
2.5
3
3.5
4
4.5
5
y/cm
4
3.96
3.79
3.47
a
2.99
2.40
1.79
1.23
0.74
0.33
0
请你通过计算,补全表格:a= 3.2 ;
(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;
(3)探究性质:随着自变量x的不断增大,函数y的变化趋势: y随x的增大而减小 ;
(4)解决问题:当BN=2AM时,AM的长度大约是 1.67 cm.(结果保留两位小数)
【解答】解:(1)如图,
在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AC=5,
过点C作CM'⊥AB于M,
∴S△ABC=AC•BC=AB•CM',
∴CM'=,
在Rt△ACM'中,根据勾股定理得,AM'==1.8,
当x=1.8时,点M与点M'重合,
∴CM⊥AB,
∵BN⊥CM,
∴点M,N重合,
∴a=BN=BM=AB﹣AM=3.2,
故答案为:3.2;
(2)如图所示,
(3)由图象知,y随x的增大而减小,
故答案为:y随x的增大而减小;
(4)借助表格和图象得,当BN=2AM时,AM的长度大约是1.67cm,
故答案为:1.67.
8.(2021•兰州)如图1,二次函数y=a(x+3)(x﹣4)图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.
(1)求二次函数y=a(x+3)(x﹣4)的表达式;
(2)过点P作PQ⊥x轴分别交线段AB,抛物线于点Q,C,连接AC.当OP=1时,求△ACQ的面积;
(3)如图2,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.
【解答】解:(1)将B(0,﹣2)代入y=a(x+3)(x﹣4),
∴a=,
∴y=(x+3)(x﹣4)=x2﹣x﹣2;
(2)令y=0,则(x+3)(x﹣4)=0,
∴x=﹣3或x=4,
∴A(4,0),
设直线AB的解析式为y=kx+b,
∴,
∴,
∴y=x﹣2,
∵OP=1,
∴P(1,0),
∵PQ⊥x轴,
∴Q(1,﹣),C(1,﹣2),
∴AP=3,
∴S△ACQ=S△ACP﹣S△APQ=×3×2﹣×3×=;
(3)设P(t,0),
如图2,过点D作x轴垂线交于点N,
∵∠BPD=90°,
∴∠OPB+∠NPD=90°,∠OPB+∠OBP=90°,
∴∠NPD=∠OBP,
∵BP=PD,
∴△PND≌△BOP(AAS),
∴OP=ND,BO=PN,
∴D(t+2,﹣t),
∴﹣t=(t+2+3)(t+2﹣4),
解得t=1或t=﹣10,
∴D(3,﹣1)或D(﹣8,10).
9.(2021•兰州)如图1,二次函数y=a(x+3)(x﹣4)的图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.
(1)求二次函数y=a(x+3)(x﹣4)的表达式;
(2)过点P作PQ⊥x轴分别交线段AB,抛物线于点Q,C,连接AC.当OP=1时,求△ACQ的面积;
(3)如图2,将线段PB绕点P逆时针旋转90°得到线段PD.
①当点D在抛物线上时,求点D的坐标;
②点E(2,﹣)在抛物线上,连接PE,当PE平分∠BPD时,直接写出点P的坐标.
【解答】解:(1)将B(0,﹣2)代入y=a(x+3)(x﹣4),
∴a=,
∴y=(x+3)(x﹣4)=x2﹣x﹣2;
(2)令y=0,则(x+3)(x﹣4)=0,
∴x=﹣3或x=4,
∴A(4,0),
设直线AB的解析式为y=kx+b,
∴,
∴,
∴y=x﹣2,
∵OP=1,
∴P(1,0),
∵PQ⊥x轴,
∴Q(1,﹣),C(1,﹣2),
∴AP=3,
∴S△ACQ=S△ACP﹣S△APQ=×3×2﹣×3×=;
(3)①设P(t,0),
如图2,过点D作x轴垂线交于点N,
∵∠BPD=90°,
∴∠OPB+∠NPD=90°,∠OPB+∠OBP=90°,
∴∠NPD=∠OBP,
∵BP=PD,
∴△PND≌△BOP(AAS),
∴OP=ND,BO=PN,
∴D(t+2,﹣t),
∴﹣t=(t+2+3)(t+2﹣4),
解得t=1或t=﹣10,
∴D(3,﹣1)或D(﹣8,10);
②如图3,∵PE平分∠BPD,
∴∠BPE=∠EPD,
∵∠BPD=90°,
∴∠BPE=45°,
当PE∥y轴时,∠OBP=45°,
∴P(2,0);
如图4,过B点作BG⊥PB交PE于点G,过G点作FG⊥y轴,交于点F,
∵∠PBF+∠FBG=90°,∠FBG+∠FGB=90°,
∴∠PBF=∠FGB,
∵∠BPG=45°,
∴BP=BG,
∴△BPO≌△GBF(AAS),
∴BF=OP,FG=OB,
∵OB=2,
∴FG=2,
∵E(2,﹣)
∴E点与G点重合,
∴PO=BF=2﹣=,
∴P(﹣,0);
综上所述:P点的坐标为(2,0)或(﹣,0).
七.四边形综合题(共3小题)
10.(2022•兰州)综合与实践
【问题情境】
数学活动课上,老师出示了一个问题:如图1,在正方形ABCD中,E是BC的中点,AE⊥EP,EP与正方形的外角∠DCG的平分线交于P点.试猜想AE与EP的数量关系,并加以证明;
【思考尝试】
(1)同学们发现,取AB的中点F,连接EF可以解决这个问题.请在图1中补全图形,解答老师提出的问题.
【实践探究】
(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接CP,可以求出∠DCP的大小,请你思考并解答这个问题.
【拓展迁移】
(3)突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接DP.知道正方形的边长时,可以求出△ADP周长的最小值.当AB=4时,请你求出△ADP周长的最小值.
【解答】解:(1)AE=EP,
理由如下:取AB的中点F,连接EF,
∵F、E分别为AB、BC的中点,
∴AF=BF=BE=CE,
∴∠BFE=45°,
∴∠AFE=135°,
∵CP平分∠DCG,
∴∠DCP=45°,
∴∠ECP=135°,
∴∠AFE=∠ECP,
∵AE⊥PE,
∴∠AEP=90°,
∴∠AEB+∠PEC=90°,
∵∠AEB+∠BAE=90°,
∴∠PEC=∠BAE,
∴△AFE≌△ECP(ASA),
∴AE=EP;
(2)在AB上取AF=EC,连接EF,
由(1)同理可得∠CEP=∠FAE,
∵AF=EC,AE=EP,
∴△FAE≌△CEP(SAS),
∴∠ECP=∠AFE,
∵AF=EC,AB=BC,
∴BF=BE,
∴∠BEF=∠BFE=45°,
∴∠AFE=135°,
∴∠ECP=135°,
∴∠DCP=45°,
(3)作DG⊥CP,交BC的延长线于G,交CP于O,连接AG,
由(2)知,∠DCP=45°,
∴∠CDG=45°,
∴△DCG是等腰直角三角形,
∴点D与G关于CP对称,
∴AP+DP的最小值为AG的长,
∵AB=4,
∴BG=8,
由勾股定理得AG=4,
∴△ADP周长的最小值为AD+AG=4+4.
11.(2021•兰州)已知正方形ABCD,E,F为平面内两点.
【探究建模】
(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;
【类比应用】
(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.
①(1)中的结论AE=CF还成立吗?请说明理由;
②猜想并证明线段AE,CE,DE之间的数量关系.
【解答】(1)证明:如图1中,
∵四边形ABCD是正方形,
∴DA=DC,∠A=∠ADC=∠DCB=90°,
∵DE⊥DF,
∴∠EDF=∠ADC=90°,
∴∠ADE=∠CDF,
在△DAE和△DCF中,
,
∴△DAE≌△DCF(ASA),
∴AE=CF.
(2)①(1)中的结论AE=CF还成立.
证明:如图2中,
∵四边形ABCD是正方形,
∴DA=DC,∠DAB=∠ADC=∠DCB=∠DCF=90°,
∵DE⊥DF,
∴∠EDF=∠ADC=90°,
∴∠ADE=∠CDF,
∵AE⊥EF,
∴∠AEF=90°,
∴∠DAE+∠DCE=180°,
∵∠DCF+∠DCE=180°,
∴∠DAE=∠DCF,
在△DAE和△DCF中,
,
∴△DAE≌△DCF(ASA),
∴AE=CF.
②解:结论:EA+EC=DE.
理由:如图2中,连接AC交DE于点O,过点D作DK⊥EC于点K,DJ⊥EA交EA的延长线于点J.
∵四边形ABCD是正方形,△DEF是等腰直角三角形,
∴∠DAO=∠OEC=45°,
∵∠AOD=∠EOC,
∴△AOD∽△EOC,
∴,
∴.
∵∠AOE=∠DOC,
∴△AOE∽△DOC,
∴∠AEO=∠DCO=45°,
∴∠DEJ=∠DEK,
∵∠J=∠DKE=90°,ED=ED,
∴△EDJ≌△EDK(AAS),
∴EJ=EK,DJ=DK,
∵∠J=∠DKC=90°,DJ=DK,DA=DC,
∴Rt△DJA≌Rt△DKC(HL),
∴AJ=CK,
∴EA+EC=EJ﹣AJ+EK+CK=2EJ,
∵DE=EJ,
∴EA+EC=DE.
12.(2021•兰州)已知正方形ABCD,E,F为平面内两点.
【探究建模】
(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;
【类比应用】
(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.猜想并证明线段AE,CE,DE之间的数量关系;
【拓展迁移】
(3)如图3,当点E在正方形ABCD外部时,AE⊥EC,AE⊥AF,DE⊥BE,且D,F,E三点共线,DE与AB交于G点.若DF=3,AE=,求CE的长.
【解答】(1)证明:如图1中,
∵四边形ABCD是正方形,
∴DA=DC,∠A=∠ADC=∠DCB=∠DCF=90°,
∵DE⊥DF,
∴∠EDF=∠ADC=90°,
∴∠ADE=∠CDF,
在△DAE和△DCF中,
,
∴△DAE≌△DCF(ASA),
∴AE=CF.
(2)解:猜想:EA+EC=DE.
理由:如图2中,
∵四边形ABCD是正方形,
∴DA=DC,∠ADC=90°,
∵DE⊥DF,AE⊥EF,
∴∠AEF=∠EDF=90°,
∴∠ADC=∠EDF,
∴∠ADE=∠CDF,
∵∠ADC+∠AEC=180°,
∴∠DAE+∠DCE=180°,
∵∠DCF+∠DCE=180°,
∴∠DAE=∠DCF,
∴△DAE≌△DCF(AAS),
∴AE=CF,DE=DF,
∴EF=DE,
∵AE+EC=EC+CF=EF,
∴EA+EC=DE.
(3)解:如图3中,连接AC,取AC的中点O,连接OE,OD.
∵四边形ABCD是正方形,AE⊥EC,
∴∠AEC=∠ADC=90°,
∵OA=OC,
∴OD=OA=OC=OE,
∴A,E,C,D四点共圆,
∴∠AED=∠ACD=45°,
∴∠AED=∠DEC=45°,
由(2)可知,AE+EC=DE,
∵AE⊥AF,
∴∠EAF=90°,
∴∠AEF=∠AFE=45°,
∴AE=AF=,
∴EF=AE=2,
∵DF=3,
∴DE=5,
∴+EC=5,
∴EC=4.
八.切线的判定与性质(共2小题)
13.(2022•兰州)如图,⊙O是△ABC的外接圆,AB是直径,OD⊥OC,连接AD,∠ADO=∠BOC,AC与OD相交于点E.
(1)求证:AD是⊙O的切线;
(2)若tan∠OAC=,AD=,求⊙O的半径.
【解答】(1)证明:∵OD⊥OC,
∴∠COD=90°,
∴∠BOC+∠AOD=180°﹣90°=90°,
又∵∠ADO=∠BOC,
∴∠ADO+∠AOD=90°,
∴∠OAD=180°﹣90°=90°,
即OA⊥AD,
∵OA是半径,
∴AD是⊙O的切线;
(2)解:∵OA=OC,
∴∠OAC=∠OCA,
∴tan∠OAC==tan∠OCA=,
∵AB是直径,
∴∠ACB=90°=∠OAD,即∠OCB+∠OCA=90°=∠OAC+∠DAE,
∴∠DAE=∠OCB,
又∵∠ADO=∠BOC,
∴∠DEA=∠B,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠DAE=∠DEA,
∴AD=DE=,
设半径为r,则OE=r,OD=r+,
在Rt△AOD中,由勾股定理得,
AD2+OA2=OD2,
即()2+r2=(r+)2,
解得r=2或r=0(舍去),
即半径为2.
14.(2021•兰州)如图,△ABC内接于⊙O,AB是⊙O的直径,E为AB上一点,BE=BC,延长CE交AD于点D,AD=AC.
(1)求证:AD是⊙O的切线;
(2)若tan∠ACE=,OE=3,求BC的长.
【解答】解:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
即∠ACE+∠BCE=90°,
∵AD=AC,BE=BC,
∴∠ACE=∠D,∠BCE=∠BEC,
又∵∠BEC=∠AED,
∴∠AED+∠D=90°,
∴∠DAE=90°,
即AD⊥AE,
∵OA是半径,
∴AD是⊙O的切线;
(2)由tan∠ACE==tan∠D可设AE=a,则AD=3a=AC,
∵OE=3,
∴OA=a+3,AB=2a+6,
∴BE=a+3+3=a+6=BC,
在Rt△ABC中,由勾股定理得,
AB2=BC2+AC2,
即(2a+6)2=(a+6)2+(3a)2,
解得a1=0(舍去),a2=2,
∴BC=a+6=8.
九.圆的综合题(共1小题)
15.(2022•兰州)综合与实践
问题情境:我国东周到汉代一些出土实物上反映出一些几何作图方法,如侯马铸铜遗址出土车軎(wèi)范、芯组成的铸型(如图1),它的端面是圆形.如图2是用“矩”(带直角的角尺)确定端面圆心的方法:将“矩”的直角尖端A沿圆周移动,直到AB=AC,在圆上标记A,B,C三点;将“矩”向右旋转,使它左侧边落在A,B点上,“矩”的另一条边与的交点标记为D点,这样就用“矩”确定了圆上等距离的A,B,C,D四点,连接AD,BC相交于点O,即O为圆心.
问题解决:(1)请你根据“问题情境”中提供的方法,用三角板还原我国古代几何作图确定圆心O.如图3,点A,B,C在⊙O上,AB⊥AC,且AB=AC,请作出圆心O.(保留作图痕迹,不写作法)
类比迁移:(2)小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB和AC不相等,用三角板也可以确定圆心O.如图4,点A,B,C在⊙O上,AB⊥AC,请作出圆心O.(保留作图痕迹,不写作法)
拓展探究:(3)小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图的方法确定圆心可以减少误差.如图5,点A,B,C是⊙O上任意三点,请用不带刻度的直尺和圆规作出圆心O.(保留作图痕迹,不写作法)请写出你确定圆心的理由: 垂直平分弦的直线经过圆心 .
【解答】解:问题解决:
(1)如图:
O即为圆心;
类比迁移:
(2)如图:
O即为所求作的圆心;
拓展探究:
(3)如图:
O即为所求作的圆心,理由是垂直平分弦的直线经过圆心,
故答案为:垂直平分弦的直线经过圆心.
一十.解直角三角形的应用-仰角俯角问题(共1小题)
16.(2022•兰州)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得∠ADC=31°,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得∠AFC=42°.求凉亭AB的高度.(A,C,B三点共线,AB⊥BE,AC⊥CD,CD=BE,BC=DE.结果精确到0.1m)
(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
【解答】解:由题意得:
BC=FG=DE=1.5m,DF=GE=3m,∠ACF=90°,
设CF=xm,
∴CD=CF+DF=(x+3)m,
在Rt△ACF中,∠AFC=42°,
∴AC=CF•tan42°≈0.9x(m),
在Rt△ACD中,∠ADC=31°,
∴tan31°==≈0.6,
∴x=6,
经检验:x=6是原方程的根,
∴AB=AC+BC=0.9x+1.5=6.9(m),
∴凉亭AB的高约为6.9m.
相关试卷
这是一份甘肃省兰州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共21页。试卷主要包含了解方程,解不等式组,综合与实践等内容,欢迎下载使用。
这是一份甘肃省兰州市三年(2020-2022)中考数学真题分类汇编-解答题(基础题),共15页。试卷主要包含了先化简,再求值,计算,解方程,<8,之间的关系等内容,欢迎下载使用。
这是一份甘肃省兰州市三年(2020-2022)中考数学真题分类汇编-选择题,共23页。