


2022年浙江省台州市椒江区书生中学中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )
A.5个 B.4个 C.3个 D.2个
2.若kb<0,则一次函数的图象一定经过( )
A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
3.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
4.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )
A.3m B. m C. m D.4m
5.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则
A.圆锥形冰淇淋纸套的底面半径为4cm
B.圆锥形冰淇淋纸套的底面半径为6cm
C.圆锥形冰淇淋纸套的高为
D.圆锥形冰淇淋纸套的高为
6.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为( )
A.30° B.35° C.40° D.45°
7.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )
A.10 B.9 C.8 D.6
8.4的平方根是( )
A.4 B.±4 C.±2 D.2
9.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )
A.3,-1 B.1,-3 C.-3,1 D.-1,3
10.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为( )
A.6 B.9 C.10 D.12
11.如图,AB与⊙O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的长是( )
A. B. C. D.
12.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A. B. C. D.4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算(-2)×3+(-3)=_______________.
14.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.
15.如图,在中,,, ,,,点在上,交于点,交于点,当时,________.
16.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为_____.
17.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.
18.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是
.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.
A
B
C
笔试
85
95
90
口试
80
85
(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A、B、C、选择一个填空)
20.(6分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
(1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人.
(2)将条形统计图补充完整;
(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.
21.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;△A2B2C2的面积是 平方单位.
22.(8分)(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
①∠EAF的度数;
②线段AE,ED,DB之间的数量关系.
23.(8分)如图,△ABC与△A1B1C1是位似图形.
(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.
24.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.
25.(10分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.
(1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?
根据题意,先填写下表,再完成本问解答:
型号
A型
B型
购进数量(盏)
x
_____
购买费用(元)
_____
_____
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
26.(12分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.
(1)求该抛物线的解析式;
(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;
(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.
27.(12分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.
已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.
要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;
等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
平行四边形不是轴对称图形,是中心对称图形,不符合题意.
共3个既是轴对称图形又是中心对称图形.
故选C.
2、D
【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
【详解】
∵kb<0,
∴k、b异号。
①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
故选:D
【点睛】
此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
3、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
4、B
【解析】
因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.
【详解】
解:∵sin∠CAB=
∴∠CAB=45°.
∵∠C′AC=15°,
∴∠C′AB′=60°.
∴sin60°=,
解得:B′C′=3.
故选:B.
【点睛】
此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.
5、C
【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.
【详解】
解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.
【点睛】
本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
圆锥的母线长等于侧面展开图的扇形半径;
圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.
6、B
【解析】
分析:根据平行线的性质和三角形的外角性质解答即可.
详解:如图,
∵AB∥CD,∠1=45°,
∴∠4=∠1=45°,
∵∠3=80°,
∴∠2=∠3-∠4=80°-45°=35°,
故选B.
点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.
7、A
【解析】
过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.
解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.
设OA=a,BF=b,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM==a,
∴点A的坐标为(a, a).
∵点A在反比例函数y=的图象上,
∴a×a=a2=12,
解得:a=5,或a=﹣5(舍去).
∴AM=8,OM=1.
∵四边形OACB是菱形,
∴OA=OB=10,BC∥OA,
∴∠FBN=∠AOB.
在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,
∴FN=BF•sin∠FBN=b,BN==b,
∴点F的坐标为(10+b,b).
∵点F在反比例函数y=的图象上,
∴(10+b)×b=12,
S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10
故选A.
“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
8、C
【解析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.
【详解】
∵(±1)1=4,
∴4的平方根是±1.
故选D.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
9、A
【解析】
根据题意可得方程组,再解方程组即可.
【详解】
由题意得:,
解得:,
故选A.
10、B
【解析】
首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.
【详解】
解:如图,连接OA、OB,
,
∵∠ACB=30°,
∴∠AOB=2∠ACB=60°,
∵OA=OB,
∴△AOB为等边三角形,
∵⊙O的半径为6,
∴AB=OA=OB=6,
∵点E,F分别是AC、BC的中点,
∴EF=AB=3,
要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,
∵当弦GH是圆的直径时,它的最大值为:6×2=12,
∴GE+FH的最大值为:12﹣3=1.
故选:B.
【点睛】
本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.
11、B
【解析】
解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为=π.故选B.
点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.
12、B
【解析】
分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
故选B.
点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-9
【解析】
根据有理数的计算即可求解.
【详解】
(-2)×3+(-3)=-6-3=-9
【点睛】
此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.
14、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.
【详解】
画树状图得:
∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,
∴两次摸出的球都是红球的概率是,
故答案为.
【点睛】
本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.
15、1
【解析】
如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.
【详解】
如图,作PQ⊥AB于Q,PR⊥BC于R.
∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.
∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.
故答案为:1.
【点睛】
本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.
16、2a﹣b.
【解析】
直接利用数轴上a,b的位置进而得出b﹣a<0,a>0,再化简得出答案.
【详解】
解:由数轴可得:
b﹣a<0,a>0,
则|b﹣a|+
=a﹣b+a
=2a﹣b.
故答案为2a﹣b.
【点睛】
此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.
17、35°
【解析】
分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.
详解:∵直尺的两边互相平行,∠1=25°,
∴∠3=∠1=25°,
∴∠2=60°-∠3=60°-25°=35°.
故答案为35°.
点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.
18、-2<k<。
【解析】
由图可知,∠AOB=45°,∴直线OA的解析式为y=x,
联立,消掉y得,,
由解得,.
∴当时,抛物线与OA有一个交点,此交点的横坐标为1.
∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为().
∴交点在线段AO上.
当抛物线经过点B(2,0)时,,解得k=-2.
∴要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<.
【详解】
请在此输入详解!
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)90;(2)144度;(3)105,120,75;(4)B
【解析】
(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;
(2)用360°乘以B对应的百分比可得答案;
(3)用总人数乘以A、B、C三人对应的百分比可得答案;
(4)根据加权平均数的定义计算可得.
【详解】
解:(1)由条形图知,A演讲得分为90分,
补全图形如下:
故答案为90;
(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,
故答案为144;
(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,
故答案为105、120、75;
(4)A的最终得分为=92.5(分),
B的最终得分为=98(分),
C的最终得分为=84(分),
∴B最终当选,
故答案为B.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
20、(1)50,10;(2)见解析.(3)16.8万
【解析】
(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.
(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,
由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.
(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为24× =16.8(万).
【详解】
解:(1)本次被调查的学员共有:15÷30%=50(人),
在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),
故答案为50,10;
(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,
在被调查者中参加“4科”课外辅导的有:50×10%=5(人),
补全的条形统计图如右图所示;
(3)24× =16.8(万),
答:参与辅导科目不多于2科的学生大约有16.8人.
【点睛】
本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.
21、(1)(2,﹣2);
(2)(1,0);
(3)1.
【解析】
试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
(3)利用等腰直角三角形的性质得出△A2B2C2的面积.
试题解析:(1)如图所示:C1(2,﹣2);
故答案为(2,﹣2);
(2)如图所示:C2(1,0);
故答案为(1,0);
(3)∵=20,=20,=40,
∴△A2B2C2是等腰直角三角形,
∴△A2B2C2的面积是:××=1平方单位.
故答案为1.
考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
22、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1
【解析】
试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.
试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;
②DE=EF.理由如下:
∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
②AE1+DB1=DE1,理由如下:
∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.
23、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
【解析】
分析:(1)直接利用已知点位置得出B点坐标即可;
(2)直接利用位似图形的性质得出对应点位置进而得出答案;
(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
故答案为(﹣2,﹣5);
(2)如图所示:△AB2C2,即为所求;
(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
故答案为6+4.
点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
24、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
【解析】
试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.
试题解析:(1)树状图如下图:
则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),
∴点M(x,y)在函数y=﹣的图象上的概率为:.
考点:列表法或树状图法求概率.
25、(1)30x, y,50y;(2)商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
【解析】
(1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;
(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
【详解】
解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得:
解得:.
答:应购进A型台灯75盏,B型台灯2盏.
故答案为30x;y;50y;
(2)设商场应购进A型台灯x盏,销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.
∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥2.
∵k=﹣5<0,y随x的增大而减小,∴x=2时,y取得最大值,为﹣5×2+1=1875(元).
答:商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
【点睛】
本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.
26、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).
【解析】
分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.
详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,
则点A(﹣2,0),B(0,2),
把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.
∴该抛物线的解析式为y=﹣x2﹣x+2;
(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,
则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;
(3)如图,作PE⊥x轴于点E,交AB于点D,
在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,
在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,
设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).
点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.
27、(1)8m;(2)答案不唯一
【解析】
(1)根据入射角等于反射角可得 ∠APB=∠CPD ,由 AB⊥BD、CD⊥BD 可得到 ∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.
(2)设计成视角问题求古城墙的高度.
【详解】
(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,
∴Rt△ABP∽Rt△CDP,
∴ ,
∴CD==8.
答:该古城墙的高度为8m
(2)解:答案不唯一,如:如图,
在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,
过点D作DCAB于点C.在Rt△ACD中,∠ACD=90°,tanα=,
∴AC=α tanα,
∴AB=AC+BC=αtanα+h
【点睛】
本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
浙江省台州市椒江区书生中学2023-2024学年九年级上学期期末数学试题(原卷+解析): 这是一份浙江省台州市椒江区书生中学2023-2024学年九年级上学期期末数学试题(原卷+解析),文件包含精品解析浙江省台州市椒江区书生中学2023-2024学年九年级上学期期末数学试题原卷版docx、精品解析浙江省台州市椒江区书生中学2023-2024学年九年级上学期期末数学试题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
2023-2024学年浙江省台州市椒江区书生中学八年级(上)月考数学试卷(12月份)(含解析): 这是一份2023-2024学年浙江省台州市椒江区书生中学八年级(上)月考数学试卷(12月份)(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023-2024学年浙江省台州市椒江区书生中学九年级(上)月考数学试卷(12月份)(含解析): 这是一份2023-2024学年浙江省台州市椒江区书生中学九年级(上)月考数学试卷(12月份)(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。