|试卷下载
搜索
    上传资料 赚现金
    安徽省“六校联盟”2022年中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    安徽省“六校联盟”2022年中考考前最后一卷数学试卷含解析01
    安徽省“六校联盟”2022年中考考前最后一卷数学试卷含解析02
    安徽省“六校联盟”2022年中考考前最后一卷数学试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省“六校联盟”2022年中考考前最后一卷数学试卷含解析

    展开
    这是一份安徽省“六校联盟”2022年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了股市有风险,投资需谨慎等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
    A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
    2.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
    A. B. C. D.
    3.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )

    A.4 B.6 C.8 D.10
    4.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )
    A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×109
    5.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=( )

    A.2:5 B.2:3 C.3:5 D.3:2
    6.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为(  )
    A.3122×10 8元 B.3.122×10 3元
    C.3122×10 11 元 D.3.122×10 11 元
    7.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为(  )

    A. B. C. D.
    8.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是(  )
    A.中位数不相等,方差不相等
    B.平均数相等,方差不相等
    C.中位数不相等,平均数相等
    D.平均数不相等,方差相等
    9.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )

    A. B. C. D.
    10.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
    A.60元 B.70元 C.80元 D.90元
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.

    12.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.

    13.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.

    14.计算:2﹣1+=_____.
    15.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.

    16.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.

    17.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是_________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
    (1)求证:直线CD是⊙O的切线;
    (2)若DE=2BC,AD=5,求OC的值.

    19.(5分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.
    (I)计算△ABC的边AC的长为_____.
    (II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).

    20.(8分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:

    每台甲型收割机的租金
    每台乙型收割机的租金
    A地区
    1800
    1600
    B地区
    1600
    1200
    (1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
    (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
    (3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
    21.(10分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
    (1)点C坐标为 ;
    (2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
    (3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
    (4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.

    22.(10分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
    (1)求证:△ACM∽△ABE.
    (2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
    (3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.

    23.(12分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.





    单价(元/米2)



    (1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
    ①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
    ②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
    24.(14分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
    (1)在这个变化中,自变量、因变量分别是   、   ;
    (2)当点P运动的路程x=4时,△ABP的面积为y=   ;
    (3)求AB的长和梯形ABCD的面积.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
    考点:一元二次方程与函数
    2、D
    【解析】
    根据“左加右减、上加下减”的原则,
    将抛物线向左平移1个单位所得直线解析式为:;
    再向下平移3个单位为:.故选D.
    3、C
    【解析】
    根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=CF•CE.
    【详解】
    解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,
    因为BC∥DE,
    所以BF:DE=AB:AD,
    所以BF=2,CF=BC-BF=4,
    所以△CEF的面积=CF•CE=8;
    故选:C.
    点睛:
    本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.
    4、B
    【解析】
    试题分析: 15000000=1.5×2.故选B.
    考点:科学记数法—表示较大的数
    5、B
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD
    ∴∠EAB=∠DEF,∠AFB=∠DFE
    ∴△DEF∽△BAF

    ∵,
    ∴DE:AB=2:5
    ∵AB=CD,
    ∴DE:EC=2:3
    故选B
    6、D
    【解析】
    可以用排除法求解.
    【详解】
    第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.
    【点睛】
    牢记科学记数法的规则是解决这一类题的关键.
    7、A
    【解析】
    过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
    【详解】
    过O作OC⊥AB于C,过N作ND⊥OA于D,

    ∵N在直线y=x+3上,
    ∴设N的坐标是(x,x+3),
    则DN=x+3,OD=-x,
    y=x+3,
    当x=0时,y=3,
    当y=0时,x=-4,
    ∴A(-4,0),B(0,3),
    即OA=4,OB=3,
    在△AOB中,由勾股定理得:AB=5,
    ∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
    ∴3×4=5OC,
    OC=,
    ∵在Rt△NOM中,OM=ON,∠MON=90°,
    ∴∠MNO=45°,
    ∴sin45°=,
    ∴ON=,
    在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
    即(x+3)2+(-x)2=()2,
    解得:x1=-,x2=,
    ∵N在第二象限,
    ∴x只能是-,
    x+3=,
    即ND=,OD=,
    tan∠AON=.
    故选A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
    8、D
    【解析】
    分别利用平均数以及方差和中位数的定义分析,进而求出答案.
    【详解】
    2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: [(2﹣3)2+(3﹣3)2+(3﹣4)2]= ;
    3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
    故中位数不相等,方差相等.
    故选:D.
    【点睛】
    本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
    9、C
    【解析】
    根据A点坐标即可建立平面直角坐标.
    【详解】
    解:由A(0,2),B(1,1)可知原点的位置,

    建立平面直角坐标系,如图,
    ∴C(2,-1)
    故选:C.
    【点睛】
    本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
    10、C
    【解析】
    设销售该商品每月所获总利润为w,
    则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,
    ∴当x=80时,w取得最大值,最大值为3600,
    即售价为80元/件时,销售该商品所获利润最大,故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.
    【详解】
    解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.
    ∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.
    故答案为1.

    【点睛】
    本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    12、3:2;
    【解析】
    由AG//BC可得△AFG与△BFD相似 ,△AEG与△CED相似,根据相似比求解.
    【详解】
    假设:AF=3x,BF=5x ,
    ∵△AFG与△BFD相似
    ∴AG=3y,BD=5y
    由题意BC:CD=3:2则CD=2y
    ∵△AEG与△CED相似
    ∴AE:EC= AG:DC=3:2.
    【点睛】
    本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.
    13、12
    【解析】
    由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.
    【详解】
    解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.
    【点睛】
    此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.
    14、
    【解析】
    根据负整指数幂的性质和二次根式的性质,可知=.
    故答案为.
    15、(3,2).
    【解析】
    根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.
    【详解】
    解:如图所示:∵A(0,a),
    ∴点A在y轴上,
    ∵C,D的坐标分别是(b,m),(c,m),
    ∴B,E点关于y轴对称,
    ∵B的坐标是:(﹣3,2),
    ∴点E的坐标是:(3,2).
    故答案为:(3,2).

    【点睛】
    此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.
    16、
    【解析】
    试题解析:连接

    ∵四边形ABCD是矩形,

    ∴CE=BC=4,
    ∴CE=2CD,


    由勾股定理得:
    ∴阴影部分的面积是S=S扇形CEB′−S△CDE
    故答案为
    17、2
    【解析】
    由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.
    【详解】
    ∵一个正n边形的每个内角为144°,
    ∴144n=180×(n-2),解得:n=1.
    这个正n边形的所有对角线的条数是:= =2.
    故答案为2.
    【点睛】
    本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2).
    【解析】
    试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;
    (2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.
    试题解析:(1)连结DO.

    ∵AD∥OC,
    ∴∠DAO=∠COB,∠ADO=∠COD.
    又∵OA=OD,
    ∴∠DAO=∠ADO,
    ∴∠COD=∠COB. 3分
    又∵CO=CO, OD=OB
    ∴△COD≌△COB(SAS) 4分
    ∴∠CDO=∠CBO=90°.
    又∵点D在⊙O上,
    ∴CD是⊙O的切线.
    (2)∵△COD≌△COB.
    ∴CD=CB.
    ∵DE=2BC,
    ∴ED=2CD.
    ∵AD∥OC,
    ∴△EDA∽△ECO.
    ∴,
    ∴.
    考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.
    19、 作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小
    【解析】
    (1)利用勾股定理计算即可;
    (2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.
    【详解】
    解:(1)AC==.
    故答案为.
    (2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.

    故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.
    【点睛】
    本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.
    20、(1)y=200x+74000(10≤x≤30)
    (2)有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    【解析】
    (1)根据题意和表格中的数据可以得到y关于x的函数关系式;
    (2)根据题意可以得到相应的不等式,从而可以解答本题;
    (3)根据(1)中的函数解析式和一次函数的性质可以解答本题.
    【详解】
    解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
    ∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
    (2)由题意可得,
    200x+74000≥79600,得x≥28,
    ∴28≤x≤30,x为整数,
    ∴x=28、29、30,
    ∴有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
    理由:∵y=200x+74000中y随x的增大而增大,
    ∴当x=30时,y取得最大值,此时y=80000,
    ∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    【点睛】
    本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.
    21、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
    【解析】
    (1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
    (2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
    (3)将点N的坐标代入y=x2,看是否符合解析式即可;
    (4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
    【详解】
    (1)∵A(2,2),B(3,2),D(2,3),
    ∴AD=BC=1, 则点 C(3,3),
    故答案为:(3,3);
    (2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:

    解得:,
    ∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
    ∴顶点 N 坐标为(,);
    (3)由(2)把 x=代入 y=x2=()2= ,
    ∴抛物线的顶点在函数 y=x2的图象上运动;
    (4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
    解得: 【点睛】
    本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.
    22、(1)证明见解析;(2)证明见解析;(3)74.
    【解析】
    (1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
    (2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
    (3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
    【详解】
    (1)证明:∵四边形ABCD和四边形AEMN都是正方形,
    ∴,∠CAB=∠MAC=45°,
    ∴∠CAB-∠CAE=∠MAC-∠CAE,
    ∴∠BAE=∠CAM,
    ∴△ACM∽△ABE.

    (2)证明:连结AC
    因为△ACM∽△ABE,则∠ACM=∠B=90°,
    因为∠ACB=∠ECF=45°,
    所以∠ACM+∠ACB+∠ECF=180°,
    所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
    所以BD平行MF,
    又因为MC=BE,FC=CE,
    所以MF=BC=BD,
    所以四边形BFMD是平行四边形

    (3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
    =62+42+(2+6)4+ 26
    =74.
    【点睛】
    本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
    23、(1)8m2;(2)68m2;(3) 40,8
    【解析】
    (1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
    (2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
    (3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
    【详解】
    (1) ∵为长方形和菱形的对称中心,,∴
    ∵,,∴
    ∴当时,,
    (2)∵,
    ∴-,
    ∵,,
    ∴解不等式组得,
    ∵,结合图像,当时,随的增大而减小.
    ∴当时, 取得最大值为
    (3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
    【点睛】
    本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
    24、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
    【解析】
    (1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
    (2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
    (3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
    【详解】
    (1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
    故答案为x,y;
    (2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
    故答案为2;
    (3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
    由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
    【点睛】
    本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.

    相关试卷

    江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析: 这是一份江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列二次根式,最简二次根式是,下列各数中,无理数是等内容,欢迎下载使用。

    安徽省蚌埠局属校2022年中考考前最后一卷数学试卷含解析: 这是一份安徽省蚌埠局属校2022年中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,的值是,下列运算正确的是等内容,欢迎下载使用。

    2022年安徽省宣城市宣州区雁翅校中考考前最后一卷数学试卷含解析: 这是一份2022年安徽省宣城市宣州区雁翅校中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了函数y=ax2+1与,比1小2的数是,下列各式中,互为相反数的是,a的倒数是3,则a的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map