终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析

    立即下载
    加入资料篮
    江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析第1页
    江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析第2页
    江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析

    展开

    这是一份江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列二次根式,最简二次根式是,下列各数中,无理数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.关于的叙述正确的是(  )
    A.= B.在数轴上不存在表示的点
    C.=± D.与最接近的整数是3
    2.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )

    A. B. C. D.
    3.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是(  )

    A. B. C. D.
    4.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为(  )
    A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣3
    5.下列二次根式,最简二次根式是(  )
    A. B. C. D.
    6.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )

    A. B.
    C. D.
    7.下列各数中,无理数是(  )
    A.0 B. C. D.π
    8.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )
    A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×106
    9.一个多边形的内角和比它的外角和的倍少180°,那么这个多边形的边数是( )
    A.7 B.8 C.9 D.10
    10.下列图形中,是中心对称图形但不是轴对称图形的是(  )
    A. B. C. D.
    11.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有(  )
    A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890
    C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=10890
    12.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为(  )

    A.20° B.35° C.45° D.70°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知一组数据,,﹣2,3,1,6的中位数为1,则其方差为____.
    14.分式方程的解是 .
    15.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.
    16.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)
    品种

    第1年

    第2年

    第3年

    第4年

    第5年

    品种



    9.8

    9.9

    10.1

    10

    10.2





    9.4

    10.3

    10.8

    9.7

    9.8



    经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.
    17.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.
    18.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
    (1)求这次调查的家长人数,并补全图1;
    (2)求图2中表示家长“赞成”的圆心角的度数;
    (3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?

    20.(6分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高 线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命 题会正确吗?
    (1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.
    ①等腰三角形两腰上的中线相等  ;
    ②等腰三角形两底角的角平分线相等  ;
    ③有两条角平分线相等的三角形是等腰三角形  ;
    (2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.
    21.(6分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?
    22.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:
    AQI指数
    质量等级
    天数(天)
    0-50

    m
    51-100

    44
    101-150
    轻度污染
    n
    151-200
    中度污染
    4
    201-300
    重度污染
    2
    300以上
    严重污染
    2

    (1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;
    (2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?
    23.(8分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?

    24.(10分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
    (运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
    (1)C(4,),D(4,),E(4,)三点中,点   是点A,B关于直线x=4的等角点;
    (2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
    (3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).

    25.(10分)计算:|﹣1|﹣2sin45°+﹣
    26.(12分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).

    请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?

    27.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
    (1)求AB的长(精确到0.1米,参考数据:);
    (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.
    【详解】
    选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;
    选项D,与最接近的整数是=1.
    故选D.
    【点睛】
    本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.
    2、C
    【解析】
    试题解析:∵四边形ABCD是平行四边形,


    故选C.
    3、B
    【解析】
    △ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
    【详解】
    解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
    当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
    符合题意的函数关系的图象是B;
    故选B.
    【点睛】
    本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
    4、C
    【解析】
    绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,
    0.00005=,
    故选C.
    5、C
    【解析】
    根据最简二次根式的定义逐个判断即可.
    【详解】
    A.,不是最简二次根式,故本选项不符合题意;
    B.,不是最简二次根式,故本选项不符合题意;
    C.是最简二次根式,故本选项符合题意;
    D.,不是最简二次根式,故本选项不符合题意.
    故选C.
    【点睛】
    本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.
    6、B
    【解析】
    找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.
    【详解】
    解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.

    故选B.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.
    7、D
    【解析】
    利用无理数定义判断即可.
    【详解】
    解:π是无理数,
    故选:D.
    【点睛】
    此题考查了无理数,弄清无理数的定义是解本题的关键.
    8、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将365000这个数用科学记数法表示为3.65×1.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、A
    【解析】
    设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.
    【详解】
    设这个多边形的边数为n,依题意得:
    180(n-2)=360×3-180,
    解之得
    n=7.
    故选A.
    【点睛】
    本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.
    10、B
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,故错误;
    B、是中心对称图形,不是轴对称图形,故正确;
    C、是轴对称图形,也是中心对称图形,故错误;
    D、是轴对称图形,也是中心对称图形,故错误.
    故选B.
    【点睛】
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    11、C
    【解析】
    设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.
    【详解】
    解:设房价比定价180元增加x元,
    根据题意,得(180+x﹣20)(50﹣)=1.
    故选:C.
    【点睛】
    此题考查一元二次方程的应用问题,主要在于找到等量关系求解.
    12、B
    【解析】
    解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3
    【解析】
    试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴,解得x=3,∴数据的平均数=(﹣3﹣3+3+3+3+6)=3,∴方差=[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.
    考点:3.方差;3.中位数.
    14、x=﹣1.
    【解析】
    试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    试题解析:去分母得:x=2x﹣1+2,
    解得:x=﹣1,
    经检验x=﹣1是分式方程的解.
    考点:解分式方程.
    15、
    【解析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    ∵在0.、、、这四个实数种,有理数有0.、、这3个,
    ∴抽到有理数的概率为,
    故答案为.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    16、甲
    【解析】
    根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.
    【详解】
    甲种水稻产量的方差是:

    乙种水稻产量的方差是:

    ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.
    17、1
    【解析】
    首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.
    解:设黄球的个数为x个,
    根据题意得:=2/3解得:x=1.
    ∴黄球的个数为1.
    18、1
    【解析】
    求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答.
    【详解】
    解:

    只.
    故答案为:1.
    【点睛】
    本题考查的是通过样本去估计总体,总体百分比约等于样本百分比.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)答案见解析(2)36°(3)4550名
    【解析】
    试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;
    (2)利用360乘以对应的比例即可求解;
    (3)利用总人数6500乘以对应的比例即可求解.
    (1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人,

    (2)360×=36°;
    (3)反对中学生带手机的大约有6500×=4550(名).
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.
    20、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.
    【解析】
    (1)根据命题的真假判断即可;
    (2)根据全等三角形的判定和性质进行证明即可.
    【详解】
    (1)①等腰三角形两腰上的中线相等是真命题;
    ②等腰三角形两底角的角平分线相等是真命题;
    ③有两条角平分线相等的三角形是等腰三角形是真命题;
    故答案为真;真;真;
    (2)逆命题是:有两边上的中线相等的三角形是等腰三角形;
    已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,
    求证:△ABC是等腰三角形;
    证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,
    ∵BD,CE分别是AC,BC边上的中线,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,
    ∵DF∥EC,
    ∴四边形DECF是平行四边形,
    ∴EC=DF,
    ∵BD=CE,
    ∴DF=BD,
    ∴∠DBF=∠DFB,
    ∵DF∥EC,
    ∴∠F=∠ECB,
    ∴∠ECB=∠DBC,
    在△DBC与△ECB中

    ∴△DBC≌△ECB,
    ∴EB=DC,
    ∴AB=AC,
    ∴△ABC是等腰三角形.

    【点睛】
    本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程.
    21、(1);(2)-1
    【解析】
    (1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;
    (2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.
    【详解】
    解:(1)
    ①+②得,.
    将时代入①得,,
    ∴.
    (2)设“□”为a,
    ∵x、y是一对相反数,
    ∴把x=-y代入x-y=4得:-y-y=4,
    解得:y=-2,
    即x=2,
    所以方程组的解是,
    代入ax+y=-8得:2a-2=-8,
    解得:a=-1,
    即原题中“□”是-1.
    【点睛】
    本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键.
    22、 (1)m=20,n=8;55;(2) 答案见解析.
    【解析】
    (1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;
    (2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.
    【详解】
    (1)∵m=80×25%=20,n=80-20-44-4-2-2=8,
    ∴空气质量等级为“良”的天数占:×100%=55%.
    故答案为20,8,55;
    (2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),
    答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;
    补全统计图:

    【点睛】
    此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    23、裁掉的正方形的边长为2dm,底面积为12dm2.
    【解析】
    试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.
    试题解析:
    设裁掉的正方形的边长为xdm,
    由题意可得(10-2x)(6-2x)=12,
    即x2-8x+12=0,解得x=2或x=6(舍去),
    答:裁掉的正方形的边长为2dm,底面积为12dm2.
    24、(1)C(2)(3)b<﹣且b≠﹣2或b>
    【解析】
    (1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
    根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
    【详解】
    (1)点B关于直线x=4的对称点为B′(10,﹣),
    ∴直线AB′解析式为:y=﹣,
    当x=4时,y=,
    故答案为:C
    (2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
    作BH⊥l于点H
    ∵点A和A′关于直线l对称
    ∴∠APG=∠A′PG
    ∵∠BPH=∠A′PG
    ∴∠APG=∠BPH
    ∵∠AGP=∠BHP=90°
    ∴△AGP∽△BHP
    ∴,即,
    ∴mn=2,即m=,
    ∵∠APB=α,AP=AP′,
    ∴∠A=∠A′=,
    在Rt△AGP中,tan

    (3)如图,当点P位于直线AB的右下方,∠APB=60°时,
    点P在以AB为弦,所对圆周为60°,且圆心在AB下方
    若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    由对称性可知:∠APQ=∠A′PQ,
    又∠APB=60°
    ∴∠APQ=∠A′PQ=60°
    ∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
    ∴∠BAQ=60°=∠AQB=∠ABQ
    ∴△ABQ是等边三角形
    ∵线段AB为定线段
    ∴点Q为定点
    若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
    ∴直线y=ax+b(a≠0)过定点Q
    连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
    ∵A(2,),B(﹣2,﹣)
    ∴OA=OB=
    ∵△ABQ是等边三角形
    ∴∠AOQ=∠BOQ=90°,OQ=,
    ∴∠AOM+∠NOD=90°
    又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
    ∵∠AMO=∠ONQ=90°
    ∴△AMO∽△ONQ
    ∴,
    ∴,
    ∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
    设直线BQ解析式为y=kx+b
    将B、Q坐标代入得

    解得

    ∴直线BQ的解析式为:y=﹣,
    设直线AQ的解析式为:y=mx+n,
    将A、Q两点代入,
    解得 ,
    ∴直线AQ的解析式为:y=﹣3,
    若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
    若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
    又∵y=ax+b(a≠0),且点P位于AB右下方,
    ∴b<﹣ 且b≠﹣2或b>.
    【点睛】
    本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
    25、﹣1
    【解析】
    直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.
    【详解】
    原式=(﹣1)﹣2×+2﹣4
    =﹣1﹣+2﹣4
    =﹣1.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.
    26、(1)详见解析;(2)40%;(3)105;(4).
    【解析】
    (1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
    (2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
    (3)根据样本估计总体的方法计算即可;
    (4)利用概率公式即可得出结论.
    【详解】
    (1)由条形图知,男生共有:10+20+13+9=52人,
    ∴女生人数为100-52=48人,
    ∴参加武术的女生为48-15-8-15=10人,
    ∴参加武术的人数为20+10=30人,
    ∴30÷100=30%,
    参加器乐的人数为9+15=24人,
    ∴24÷100=24%,
    补全条形统计图和扇形统计图如图所示:
    (2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
    答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
    (3)500×21%=105(人).
    答:估计其中参加“书法”项目活动的有105人.
    (4).
    答:正好抽到参加“器乐”活动项目的女生的概率为.
    【点睛】
    此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    27、(1)24.2米(2) 超速,理由见解析
    【解析】
    (1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
    (2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
    【详解】
    解:(1)由題意得,
    在Rt△ADC中,,
    在Rt△BDC中,,
    ∴AB=AD-BD=(米).
    (2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
    ∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
    ∵43.56千米/小时大于40千米/小时,
    ∴此校车在AB路段超速.

    相关试卷

    江苏省苏州市吴江区2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份江苏省苏州市吴江区2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,对于不等式组,下列说法正确的是,计算的结果是等内容,欢迎下载使用。

    2022年江苏省苏州昆山市中考考前最后一卷数学试卷含解析:

    这是一份2022年江苏省苏州昆山市中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是等内容,欢迎下载使用。

    2022年江苏省苏州市吴江区实验中学中考数学考前最后一卷含解析:

    这是一份2022年江苏省苏州市吴江区实验中学中考数学考前最后一卷含解析,共18页。试卷主要包含了学校小组名同学的身高,下列计算错误的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map