|试卷下载
搜索
    上传资料 赚现金
    2022年安徽省宣城市宣州区雁翅校中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2022年安徽省宣城市宣州区雁翅校中考考前最后一卷数学试卷含解析01
    2022年安徽省宣城市宣州区雁翅校中考考前最后一卷数学试卷含解析02
    2022年安徽省宣城市宣州区雁翅校中考考前最后一卷数学试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年安徽省宣城市宣州区雁翅校中考考前最后一卷数学试卷含解析

    展开
    这是一份2022年安徽省宣城市宣州区雁翅校中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了函数y=ax2+1与,比1小2的数是,下列各式中,互为相反数的是,a的倒数是3,则a的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )

    A. B. C. D.
    2.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为(  )

    A.6 B.5 C.2 D.3
    3.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是( )
    A. B. C. D.
    4.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )
    A.圆柱 B.正方体 C.球 D.直立圆锥
    5.比1小2的数是( )
    A. B. C. D.
    6.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD; ②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是(  )

    A.4 B.1 C.2 D.3
    7.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )

    A.1:3 B.1:4 C.1:5 D.1:6
    8.下列各式中,互为相反数的是( )
    A.和 B.和 C.和 D.和
    9.如果k<0,b>0,那么一次函数y=kx+b的图象经过( )
    A.第一、二、三象限 B.第二、三、四象限
    C.第一、三、四象限 D.第一、二、四象限
    10.a的倒数是3,则a的值是(  )
    A. B.﹣ C.3 D.﹣3
    11.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是(  )
    A.若这5次成绩的中位数为8,则x=8
    B.若这5次成绩的众数是8,则x=8
    C.若这5次成绩的方差为8,则x=8
    D.若这5次成绩的平均成绩是8,则x=8
    12.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为(  )

    A.1 B.3 C.﹣1 D.2019
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算: 7+(-5)=______.
    14.分解因式______.
    15.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是_____.
    16.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.

    17.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.
    18.等腰梯形是__________对称图形.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知函数y=(x>0)的图象与一次函数y=ax﹣2(a≠0)的图象交于点A(3,n).
    (1)求实数a的值;
    (2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B,若点C在y轴上,且S△ABC=2S△AOB,求点C的坐标.
    20.(6分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1
    21.(6分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
    22.(8分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点

    求m的值及C点坐标;
    在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
    为抛物线上一点,它关于直线BC的对称点为Q
    当四边形PBQC为菱形时,求点P的坐标;
    点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由.
    23.(8分)如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;
    (1)求c与b的函数关系式;
    (2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;
    (3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值.

    24.(10分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.

    25.(10分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)

    26.(12分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
    (1)求证:DE是⊙O的切线;
    (2)若tanA=,探究线段AB和BE之间的数量关系,并证明;
    (3)在(2)的条件下,若OF=1,求圆O的半径.

    27.(12分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.
    (1)求3、4两月平均每月下调的百分率;
    (2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?
    (3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据从正面看得到的图形是主视图,可得答案.
    【详解】
    解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,
    故选:A.
    【点睛】
    本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
    2、C
    【解析】
    由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵BE:ED=1:3,
    ∴BE:OB=1:2,
    ∵AE⊥BD,
    ∴AB=OA,
    ∴OA=AB=OB,
    即△OAB是等边三角形,
    ∴∠ABD=60°,
    ∵AE⊥BD,AE=3,
    ∴AB=,
    故选C.
    【点睛】
    此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
    3、B
    【解析】
    试题分析:分a>0和a<0两种情况讨论:
    当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;
    当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.
    故选B.
    考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.
    4、B
    【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.
    考点:简单几何体的三视图.
    5、C
    【解析】
    1-2=-1,故选C
    6、D
    【解析】
    根据垂径定理,圆周角的性质定理即可作出判断.
    【详解】
    ∵P是弦AB的中点,CD是过点P的直径.
    ∴AB⊥CD,弧AD=弧BD,故①正确,③正确;
    ∠AOB=2∠AOD=4∠ACD,故②正确.
    P是OD上的任意一点,因而④不一定正确.
    故正确的是:①②③.
    故选:D.
    【点睛】
    本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
    7、C
    【解析】
    根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
    【详解】
    解:连接CE,∵AE∥BC,E为AD中点,
    ∴ .
    ∴△FEC面积是△AEF面积的2倍.
    设△AEF面积为x,则△AEC面积为3x,
    ∵E为AD中点,
    ∴△DEC面积=△AEC面积=3x.
    ∴四边形FCDE面积为1x,
    所以S△AFE:S四边形FCDE为1:1.

    故选:C.
    【点睛】
    本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
    8、A
    【解析】
    根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    解:A. =9,=-9,故和互为相反数,故正确;
    B. =9,=9,故和不是互为相反数,故错误;
    C. =-8,=-8,故和不是互为相反数,故错误;
    D. =8,=8故和不是互为相反数,故错误.
    故选A.
    【点睛】
    本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
    9、D
    【解析】
    根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.
    【详解】
    ∵k<0,
    ∴一次函数y=kx+b的图象经过第二、四象限.
    又∵b>0时,
    ∴一次函数y=kx+b的图象与y轴交与正半轴.
    综上所述,该一次函数图象经过第一、二、四象限.
    故选D.
    【点睛】
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    10、A
    【解析】
    根据倒数的定义进行解答即可.
    【详解】
    ∵a的倒数是3,∴3a=1,解得:a=.
    故选A.
    【点睛】
    本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.
    11、D
    【解析】
    根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.
    【详解】
    A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;
    B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;
    C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;
    D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
    故选D.
    【点睛】
    本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    12、C
    【解析】
    根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
    【详解】
    解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
    ∴x1+x2+…+x7=﹣1
    ∵x1+x2+x3+x4=1﹣1﹣1+3=2;
    x5+x6+x7+x8=3﹣3﹣3+5=2;

    x97+x98+x99+x100=2…
    ∴x1+x2+…+x2016=2×(2016÷4)=1.
    而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
    ∴x2017+x2018+x2019=﹣1009,
    ∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
    故选C.
    【点睛】
    此题主要考查规律型:点的坐标,解题关键在于找到其规律

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    根据有理数的加法法则计算即可.
    【详解】
    .
    故答案为:2.
    【点睛】
    本题考查有理数的加法计算,熟练掌握加法法则是关键.
    14、(x+y+z)(x﹣y﹣z).
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项可以为一组组成完全平方式,再用平方差公式即可.
    【详解】
    x2-y2-z2-2yz,
    =x2-(y2+z2+2yz),
    =x2-(y+z)2,
    =(x+y+z)(x-y-z).
    故答案为(x+y+z)(x-y-z).
    【点睛】
    本题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.
    15、m>2
    【解析】
    试题分析:有函数的图象在其所在的每一象限内,函数值y随自变量x的增大而减小可得m-2>0,解得m>2,
    考点:反比例函数的性质.
    16、小李.
    【解析】
    解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.
    故答案为:小李.
    17、1
    【解析】
    根据弧长公式l=,可得r=,再将数据代入计算即可.
    【详解】
    解:∵l=,
    ∴r===1.
    故答案为:1.
    【点睛】
    考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).
    18、轴
    【解析】
    根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.
    【详解】
    画图如下:

    结合图形,根据轴对称的定义及等腰梯形的特征可知,
    等腰梯形是轴对称图形.
    故答案为:轴
    【点睛】
    本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)a=1;(2)C(0,﹣4)或(0,0).
    【解析】
    (1)把 A(3,n)代入y=(x>0)求得 n 的值,即可得A点坐标, 再把A点坐标代入一次函数 y=ax﹣2 可得 a 的值;(2)先求出一次函数 y=ax﹣2(a≠0)的图象与 y 轴交点 B 的坐标,再分两种情况(①当C点在y轴的正半轴上或原点时;②当C点在y轴的负半轴上时)求点C的坐标即可.
    【详解】
    (1)∵函数 y=(x>0)的图象过(3,n),
    ∴3n=3,
    n=1,
    ∴A(3,1)
    ∵一次函数 y=ax﹣2(a≠0)的图象过点 A(3,1),
    ∴1=3a﹣1, 解得 a=1;
    (2)∵一次函数y=ax﹣2(a≠0)的图象与 y 轴交于点 B,
    ∴B(0,﹣2),
    ①当C点在y轴的正半轴上或原点时, 设 C(0,m),
    ∵S△ABC=2S△AOB,
    ∴×(m+2)×3=2××3, 解得:m=0,
    ②当C点在 y 轴的负半轴上时, 设(0,h),
    ∵S△ABC=2S△AOB,
    ∴×(﹣2﹣h)×3=2××3, 解得:h=﹣4,
    ∴C(0,﹣4)或(0,0).
    【点睛】
    本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解.
    20、 (1) k1=1,b=6(1)15(3)点M在第三象限,点N在第一象限
    【解析】
    试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据S△ABC=S△AOC+S△BOC即可求得△AOB的面积;(3)由<可知有三种情况,①点M、N在第三象限的分支上,②点M、N在第一象限的分支上,③ M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可.
    试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1.
    ∵A(1,8)、B(-4,-1)在图象上,
    ∴,
    解得,.
    (1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,
    ∴OC=3
    ∴S△ABC=S△AOC+S△BOC=
    (3)点M在第三象限,点N在第一象限.
    ①若<<0,点M、N在第三象限的分支上,则>,不合题意;
    ②若0<<,点M、N在第一象限的分支上,则>,不合题意;
    ③若<0<,M在第三象限,点N在第一象限,则<0<,符合题意.
    考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.
    21、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
    【解析】
    (1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
    (2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
    【详解】
    (1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
    根据题意得:
    方程两边同乘以,得
    解得:
    经检验,是原方程的解.
    ∴当时,.
    答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
    (2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
    方案一:由甲工程队单独完成.所需费用为:(万元);
    方案二:由乙工程队单独完成.所需费用为:(万元);
    方案三:由甲乙两队合作完成.所需费用为:(万元).
    ∵∴应该选择甲工程队承包该项工程.
    【点睛】
    本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    22、,;存在,;或;当时,.
    【解析】
    (1)用待定系数法求出抛物线解析式;
    (2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;
    (3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;
    ②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.
    【详解】
    解:(1)将B(4,0)代入,解得,m=4,
    ∴二次函数解析式为,令x=0,得y=4,
    ∴C(0,4);
    (2)存在,理由:∵B(4,0),C(0,4),
    ∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
    ∴,
    ∴,
    ∴△=1﹣4b=0,∴b=4,
    ∴,∴M(2,6);
    (3)①如图,∵点P在抛物线上,
    ∴设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4),
    ∴线段BC的垂直平分线的解析式为y=x,
    ∴m=,
    ∴m=,
    ∴P(,)或P(,);

    ②如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,
    ∵点D在直线BC上,∴D(t,﹣t+4),
    ∵PD=﹣(﹣t+4)=,BE+CF=4,
    ∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=
    ∵0<t<4,
    ∴当t=2时,S四边形PBQC最大=1.

    考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.
    23、(1);(2);(3)
    【解析】
    (1)把A(-1,0)代入y=x2-bx+c,即可得到结论;
    (2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;
    (3)连接QM,DM,根据平行线的判定得到QN∥MH,根据平行线的性质得到∠NMH=∠QNM,根据已知条件得到∠QMN=∠MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH推出∠NMD=90°;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论.
    【详解】
    (1)把A(﹣1,0)代入,
    ∴,
    ∴;
    (2)由(1)得,,
    ∵点D为抛物线顶点,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    将代入得,,
    解得:,(舍去),
    ∴二次函数解析式为:;
    (3)连接QM,DM,

    ∵,,
    ∴,∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,设,则,
    ∴,同理,
    设,则,∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    ∵,
    ∴,,
    ∵,
    ∴,即,
    解得:,(舍去),
    ∴,
    ∵,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,,,
    过P作于T,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.
    24、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小
    【解析】
    (1)只需运用待定系数法就可求出二次函数的解析式;
    (1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;
    (3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.
    【详解】
    (1)把A(1,0),B(8,6)代入,得

    解得:
    ∴二次函数的解析式为;
    (1)由,得
    二次函数图象的顶点坐标为(4,﹣1).
    令y=0,得,
    解得:x1=1,x1=6,
    ∴D点的坐标为(6,0);
    (3)二次函数的对称轴上存在一点C,使得的周长最小.
    连接CA,如图,
    ∵点C在二次函数的对称轴x=4上,
    ∴xC=4,CA=CD,
    ∴的周长=CD+CB+BD=CA+CB+BD,
    根据“两点之间,线段最短”,可得
    当点A、C、B三点共线时,CA+CB最小,
    此时,由于BD是定值,因此的周长最小.
    设直线AB的解析式为y=mx+n,
    把A(1,0)、B(8,6)代入y=mx+n,得

    解得:
    ∴直线AB的解析式为y=x﹣1.
    当x=4时,y=4﹣1=1,
    ∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.

    【点睛】
    本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.
    25、3+3.5
    【解析】
    延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.
    【详解】
    如图,延长ED交BC延长线于点F,则∠CFD=90°,

    ∵tan∠DCF=i=,
    ∴∠DCF=30°,
    ∵CD=4,
    ∴DF=CD=2,CF=CDcos∠DCF=4×=2,
    ∴BF=BC+CF=2+2=4,
    过点E作EG⊥AB于点G,
    则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,
    又∵∠AED=37°,
    ∴AG=GEtan∠AEG=4•tan37°,
    则AB=AG+BG=4•tan37°+3.5=3+3.5,
    故旗杆AB的高度为(3+3.5)米.
    考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题
    26、(1)答案见解析;(2)AB=1BE;(1)1.
    【解析】
    试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;
    (2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
    (1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论.
    试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;
    (2)线段AB、BE之间的数量关系为:AB=1BE.证明如下:
    ∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,
    ∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;
    (1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x.∵OF=1,∴OE=1+2x.
    在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圆O的半径为1.

    点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
    27、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析
    【解析】
    (1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;
    (2)分别计算出方案一与方案二的费用相比较即可;
    (3)根据(1)的答案计算出6月份的价格即可得到答案.
    【详解】
    (1)设3、4两月平均每月下调的百分率为x,
    由题意得:7500(1﹣x)2=6075,
    解得:x1=0.1=10%,x2=1.9(舍),
    答:3、4两月平均每月下调的百分率是10%;
    (2)方案一:6075×100×0.98=595350(元),
    方案二:6075×100﹣100×1.5×24=603900(元),
    ∵595350<603900,
    ∴方案一更优惠,小颖选择方案一:打9.8折购买;
    (3)不会跌破4800元/平方米
    因为由(1)知:平均每月下调的百分率是10%,
    所以:6075(1﹣10%)2=4920.75(元/平方米),
    ∵4920.75>4800,
    ∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.
    【点睛】
    此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.

    相关试卷

    安徽省宣城市宣州区雁翅学校2023-2024学年数学八上期末联考模拟试题含答案: 这是一份安徽省宣城市宣州区雁翅学校2023-2024学年数学八上期末联考模拟试题含答案,共7页。试卷主要包含了用反证法证明等内容,欢迎下载使用。

    2022-2023学年安徽省宣城市宣州区雁翅学校七下数学期末统考试题含答案: 这是一份2022-2023学年安徽省宣城市宣州区雁翅学校七下数学期末统考试题含答案,共7页。

    2022年安徽省宣城市宣州区雁翅初级中学八年级期中考试数学试卷: 这是一份2022年安徽省宣城市宣州区雁翅初级中学八年级期中考试数学试卷,共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map