|试卷下载
搜索
    上传资料 赚现金
    2022年浙江省宁波市北仑区重点达标名校中考数学适应性模拟试题含解析
    立即下载
    加入资料篮
    2022年浙江省宁波市北仑区重点达标名校中考数学适应性模拟试题含解析01
    2022年浙江省宁波市北仑区重点达标名校中考数学适应性模拟试题含解析02
    2022年浙江省宁波市北仑区重点达标名校中考数学适应性模拟试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省宁波市北仑区重点达标名校中考数学适应性模拟试题含解析

    展开
    这是一份2022年浙江省宁波市北仑区重点达标名校中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:
    ①AD是∠BAC的平分线;
    ②∠ADC=60°;
    ③点D在AB的中垂线上;
    ④S△ACD:S△ACB=1:1.
    其中正确的有(  )

    A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④
    2.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为(  )
    A.0 B.﹣1 C.1 D.2
    3.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )

    A. B. C. D.
    4.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为(  )

    A.15 B.17 C.19 D.24
    5.下列图标中,既是轴对称图形,又是中心对称图形的是(   )
    A. B. C. D.
    6.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为
    A. B.
    C. D.
    7.下列运算正确的是(  )
    A. B.
    C. D.
    8.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
    A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5
    9.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )

    A.1 B.2 C.3 D.4
    10.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是(  )
    A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,sin∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.

    12.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
    13.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.
    14.已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_____.(只需写出一个)
    15.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:
    ①两人相遇前,甲的速度小于乙的速度;
    ②出发后1小时,两人行程均为10km;
    ③出发后1.5小时,甲的行程比乙多3km;
    ④甲比乙先到达终点.
    其中正确的有_____个.

    16.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.
    三、解答题(共8题,共72分)
    17.(8分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.

    18.(8分)解方程:
    19.(8分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.
    (1)如图1,当0<t<2时,求证:DF∥CB;
    (2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;
    (3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.

    20.(8分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?
    21.(8分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:

    根据以上统计图,解答下列问题:本次接受调查的市民共有  人;扇形统计图中,扇形B的圆心角度数是  ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
    22.(10分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.
    23.(12分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a=20,b=10,求整个长方形运动场的面积.

    24.如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
    (1)求抛物线的解析式,并直接写出点D的坐标;
    (2)当△AMN的周长最小时,求t的值;
    (3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    ①根据作图过程可判定AD是∠BAC的角平分线;②利用角平分线的定义可推知∠CAD=10°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;④利用10°角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.
    【详解】
    ①根据作图过程可知AD是∠BAC的角平分线,①正确;②如图,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正确;③∵∠1=∠B=10°,∴AD=BD,∴点D在AB的中垂线上,③正确;④如图,∵在直角△ACD中,∠2=10°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC∙CD=AC∙AD.∴S△ABC=AC∙BC=AC∙AD=AC∙AD,∴S△DAC:S△ABC=AC∙AD:AC∙AD=1:1,④正确.故选D.

    【点睛】
    本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.
    2、C
    【解析】
    试题分析:把方程的解代入方程,可以求出字母系数a的值.
    ∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.
    故本题选C.
    【考点】一元二次方程的解;一元二次方程的定义.
    3、C
    【解析】
    列表得,


    1

    2

    0

    -1

    1

    (1,1)

    (1,2)

    (1,0)

    (1,-1)

    2

    (2,1)

    (2,2)

    (2,0)

    (2,-1)

    0

    (0,1)

    (0,2)

    (0,0)

    (0,-1)

    -1

    (-1,1)

    (-1,2)

    (-1,0)

    (-1,-1)

    由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.
    考点:用列表法(或树形图法)求概率.
    4、D
    【解析】
    由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.
    【详解】
    解:解:∵第①个图案有三角形1个,
    第②图案有三角形1+3=4个,
    第③个图案有三角形1+3+4=8个,

    ∴第n个图案有三角形4(n﹣1)个(n>1时),
    则第⑦个图中三角形的个数是4×(7﹣1)=24个,
    故选D.
    【点睛】
    本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.
    5、D
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念,可知:
    A既不是轴对称图形,也不是中心对称图形,故不正确;
    B不是轴对称图形,但是中心对称图形,故不正确;
    C是轴对称图形,但不是中心对称图形,故不正确;
    D即是轴对称图形,也是中心对称图形,故正确.
    故选D.
    考点:轴对称图形和中心对称图形识别
    6、A
    【解析】
    直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.
    【详解】
    解:设原来的平均车速为xkm/h,则根据题意可列方程为:
    ﹣=1.
    故选A.
    【点睛】
    本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.
    7、D
    【解析】
    由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.
    【详解】
    解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
    B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
    C、(-a)3=≠,故原题计算错误;
    D、2a2•3a3=6a5,故原题计算正确;
    故选:D.
    【点睛】
    本题考查了整式的乘法,解题的关键是掌握有关计算法则.
    8、B
    【解析】
    试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.
    9、C
    【解析】
    分析:
    过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.
    详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
    (2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
    (3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;
    综上所述,符合要求的半径为2的圆共有3个.
    故选C.

    点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
    10、A
    【解析】
    结合向左平移的法则,即可得到答案.
    【详解】
    解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,
    故选A.
    【点睛】
    此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、.
    【解析】
    作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F,
    可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在Rt△BGK中,可得BG长,表示出△BD'E'的周长等量代换可得其值.
    【详解】
    解:如图,作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F.

    由作图知,四边形为平行四边形,

    由对称可知


    ,即
    四边形为矩形

    在中,



    在Rt△BGK中, BK=2,GK=6,
    ∴BG2,
    ∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.
    故答案为:2+2.
    【点睛】
    本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.
    12、60°或120°.
    【解析】
    连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
    【详解】
    解:连接OA、OB.
    ∵PA,PB分别切⊙O于点A,B,
    ∴OA⊥PA,OB⊥PB;
    ∴∠PAO=∠PBO=90°;
    又∵∠APB=60°,
    ∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,

    即当C在D处时,∠ACB=60°.
    在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
    于是∠ACB的度数为60°或120°,
    故答案为60°或120°.

    【点睛】
    本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
    13、﹣18
    【解析】
    要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.
    【详解】
    a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)
    =ab(a﹣b)2,
    当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,
    故答案为:﹣18.
    【点睛】
    本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.
    14、y=x2等
    【解析】
    分析:根据二次函数的图象开口向上知道a>1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a>1,c=1即可.
    详解:∵二次函数的图象开口向上,∴a>1.∵二次函数的图象过原点,∴c=1.
    故解析式满足a>1,c=1即可,如y=x2.
    故答案为y=x2(答案不唯一).
    点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.
    15、1
    【解析】
    试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;
    由图可得,两人在1小时时相遇,行程均为10km,故②正确;
    甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;
    甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.

    16、6或2.
    【解析】
    试题分析:根据P点的不同位置,此题分两种情况计算:①点P在CD上;②点P在AD上.①点P在CD上时,如图:

    ∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是邻边相等的矩形即正方形,EF过点C,∵BF=BC=6,∴由勾股定理求得EF=;②点P在AD上时,如图:

    先建立相似三角形,过E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(两角对应相等,两三角形相似),∴对应线段成比例:,代入相应数值:,∴EF=2.综上所述:EF长为6或2.
    考点:翻折变换(折叠问题).

    三、解答题(共8题,共72分)
    17、(1)k=10,b=3;(2).
    【解析】
    试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.
    试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10
    把x=2,y=5代入y=x+b,得b=3
    (2)、∵y=x+3 ∴当y=0时,x=-3, ∴OB=3 ∴S=×3×5=7.5
    考点:一次函数与反比例函数的综合问题.
    18、x=-4是方程的解
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】


    ∴x=-4,
    当x=-4时,
    ∴x=-4是方程的解
    【点睛】
    本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
    19、(1)详见解析;(2)详见解析;(3)详见解析.
    【解析】
    (1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
    (2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
    (3)分为两种情况:根据三角形面积公式求出即可.
    【详解】
    (1)证明:如图1.
    ∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
    ∴∠AOB=90°.
    ∵DP⊥AB于点P,
    ∴∠DPB=90°,
    ∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
    ∴∠PBO+∠PDO=180°,
    ∵BC平分∠ABO,DF平分∠PDO,
    ∴∠CBO=∠PBO,∠ODF=∠PDO,
    ∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
    ∵在△FDO中,∠OFD+∠ODF=90°,
    ∴∠CBO=∠DFO,
    ∴DF∥CB. 
    (2)直线DF与CB的位置关系是:DF⊥CB,
    证明:延长DF交CB于点Q,如图2,

    ∵在△ABO中,∠AOB=90°,
    ∴∠BAO+∠ABO=90°,
    ∵在△APD中,∠APD=90°,
    ∴∠PAD+∠PDA=90°,
    ∴∠ABO=∠PDA,
    ∵BC平分∠ABO,DF平分∠PDO,
    ∴∠CBO=∠ABO,∠CDQ=∠PDO,
    ∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
    ∴∠CDQ+∠DCQ=90°,
    ∴在△QCD中,∠CQD=90°,
    ∴DF⊥CB. 
    (3)解:过M作MN⊥y轴于N,
    ∵M(4,-1),
    ∴MN=4,ON=1,
    当E在y轴的正半轴上时,如图3,

    ∵△MCE的面积等于△BCO面积的倍时,
    ∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
    解得:OE=,
    当E在y轴的负半轴上时,如图4,

    ×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
    解得:OE=,
    即E的坐标是(0,)或(0,-).
    【点睛】
    本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.
    20、(1);(2);(3)x=1.
    【解析】
    (1)用不合格品的数量除以总量即可求得抽到不合格品的概率;
    (2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;
    (3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.
    【详解】
    解:(1)∵4件同型号的产品中,有1件不合格品,
    ∴P(不合格品)=;
    (2)
    共有12种情况,抽到的都是合格品的情况有6种,
    P(抽到的都是合格品)==;
    (3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,
    ∴抽到合格品的概率等于0.95,
    ∴ =0.95,
    解得:x=1.
    【点睛】
    本题考查利用频率估计概率;概率公式;列表法与树状图法.
    21、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.
    【解析】
    (1)根据D组人数以及百分比计算即可.
    (2)根据圆心角度数=360°×百分比计算即可.
    (3)求出A,C两组人数画出条形图即可.
    (4)利用样本估计总体的思想解决问题即可.
    【详解】
    (1)本次接受调查的市民共有:50÷25%=1(人),
    故答案为1.
    (2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;
    故答案为:43.2°
    (3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).
    条形统计图如图所示:

    (4)15×40%=6(万人).
    答:估计乘公交车上班的人数为6万人.
    【点睛】
    本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    22、2x2﹣7xy,1
    【解析】
    根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可.
    【详解】
    原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,
    当x=5,y=时,原式=50﹣7=1.
    【点睛】
    完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.
    23、(1)(2)(3)
    【解析】
    试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可.
    试题解析:
    (1)矩形B的长可表示为:a+b,宽可表示为:a-b,
    ∴每个B区矩形场地的周长为:2(a+b+a-b)=4a;
    (2)整个矩形的长为a+a+b=2a+b,宽为:a+a-b=2a-b,
    ∴整个矩形的周长为:2(2a+b+2a-b)=8a;
    (3)矩形的面积为:S=(2a+b)(2a-b)= ,
    把,代入得,S=4×202-102=4×400-100=1500.
    点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽.
    24、(1)y=x2﹣x,点D的坐标为(2,﹣);(2)t=2;(3)M点的坐标为(2,0)或(6,0).
    【解析】
    (1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;
    (2)连接AC,如图①,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明△AOC和△ACB都是等边三角形,接着证明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,则判断△CMN为等边三角形得到MN=CM,于是△AMN的周长=OA+CM,由于CM⊥OA时,CM的值最小,△AMN的周长最小,从而得到t的值;
    (3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,△AME∽△COD,即|t-4|:4=|t2-t |:,当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标.
    【详解】
    解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得
    ,解得,
    ∴抛物线解析式为y=x2-x;
    ∵y=x2-x =-2) 2-;
    ∴点D的坐标为(2,-);
    (2)连接AC,如图①,

    AB==4,
    而OA=4,
    ∴平行四边形OCBA为菱形,
    ∴OC=BC=4,
    ∴C(2,2),
    ∴AC==4,
    ∴OC=OA=AC=AB=BC,
    ∴△AOC和△ACB都是等边三角形,
    ∴∠AOC=∠COB=∠OCA=60°,
    而OC=AC,OM=AN,
    ∴△OCM≌△ACN,
    ∴CM=CN,∠OCM=∠ACN,
    ∵∠OCM+∠ACM=60°,
    ∴∠ACN+∠ACM=60°,
    ∴△CMN为等边三角形,
    ∴MN=CM,
    ∴△AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,
    当CM⊥OA时,CM的值最小,△AMN的周长最小,此时OM=2,
    ∴t=2;
    (3)∵C(2,2),D(2,-),
    ∴CD=,
    ∵OD=,OC=4,
    ∴OD2+OC2=CD2,
    ∴△OCD为直角三角形,∠COD=90°,
    设M(t,0),则E(t,t2-t),
    ∵∠AME=∠COD,
    ∴当时,△AME∽△COD,即|t-4|:4=|t2-t |:,
    整理得|t2-t|=|t-4|,
    解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);
    当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,
    解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);
    综上所述,M点的坐标为(2,0)或(6,0).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.

    相关试卷

    浙江省温州市达标名校2023届中考数学适应性模拟试题含解析: 这是一份浙江省温州市达标名校2023届中考数学适应性模拟试题含解析,共14页。

    浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。

    浙江省宁波市镇海区重点达标名校2022年中考数学考试模拟冲刺卷含解析: 这是一份浙江省宁波市镇海区重点达标名校2022年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔,以下各图中,能确定的是,若分式有意义,则a的取值范围是,下列命题中错误的有个等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map