|试卷下载
搜索
    上传资料 赚现金
    浙江省宁波市北仑区重点达标名校2022年中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    浙江省宁波市北仑区重点达标名校2022年中考数学最后冲刺模拟试卷含解析01
    浙江省宁波市北仑区重点达标名校2022年中考数学最后冲刺模拟试卷含解析02
    浙江省宁波市北仑区重点达标名校2022年中考数学最后冲刺模拟试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省宁波市北仑区重点达标名校2022年中考数学最后冲刺模拟试卷含解析

    展开
    这是一份浙江省宁波市北仑区重点达标名校2022年中考数学最后冲刺模拟试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,某班7名女生的体重等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )

    A. B. C. D.1
    2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )

    A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
    C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
    3.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )

    A.∠ABD=∠C B.∠ADB=∠ABC C. D.
    4.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是(  )
    A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
    C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
    5.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
    A.74 B.44 C.42 D.40
    6.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为(  )

    A.36 B.12 C.6 D.3
    7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是(  )

    A.12 B.14 C.16 D.18
    8.在△ABC中,∠C=90°,,那么∠B的度数为( )
    A.60° B.45° C.30° D.30°或60°
    9.如图所示的几何体的主视图正确的是( )

    A. B. C. D.
    10.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )

    A.32° B.64° C.77° D.87°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.
    12.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.

    13.阅读下面材料:
    在数学课上,老师提出利用尺规作图完成下面问题:
    已知:∠ACB是△ABC的一个内角.
    求作:∠APB=∠ACB.
    小明的做法如下:
    如图
    ①作线段AB的垂直平分线m;
    ②作线段BC的垂直平分线n,与直线m交于点O;
    ③以点O为圆心,OA为半径作△ABC的外接圆;
    ④在弧ACB上取一点P,连结AP,BP.
    所以∠APB=∠ACB.
    老师说:“小明的作法正确.”
    请回答:
    (1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;
    (2)∠APB=∠ACB的依据是_____.

    14.如图,Rt△ABC的直角边BC在x轴上,直线y=x﹣经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_______.

    15.如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动
    连接,线段的长随的变化而变化,当最大时,______.当的边与坐标轴平行时,______.
    16.如图,点 A 是反比例函数 y=﹣(x<0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
    (1)求该抛物线的解析式;
    (2)阅读理解:
    在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
    解决问题:
    ①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
    ②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.

    18.(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
    (运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
    (1)C(4,),D(4,),E(4,)三点中,点   是点A,B关于直线x=4的等角点;
    (2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
    (3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).

    19.(8分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.

    (1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;
    (2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
    (3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
    20.(8分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
    21.(8分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)

    22.(10分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.

    23.(12分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.

    根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
    24.已知关于x的方程.
    (1)当该方程的一个根为1时,求a的值及该方程的另一根;
    (2)求证:不论a取何实数,该方程都有两个不相等的实数根.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
    详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
    设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
    在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
    点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
    2、D
    【解析】
    首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
    【详解】
    解:

    四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
    ,,
    四边形是平行四边形(对边相互平行的四边形是平行四边形);
    过点分别作,边上的高为,.则
    (两纸条相同,纸条宽度相同);
    平行四边形中,,即,
    ,即.故正确;
    平行四边形为菱形(邻边相等的平行四边形是菱形).
    ,(菱形的对角相等),故正确;
    ,(平行四边形的对边相等),故正确;
    如果四边形是矩形时,该等式成立.故不一定正确.
    故选:.
    【点睛】
    本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
    3、C
    【解析】
    由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
    【详解】
    ∵∠A是公共角,
    ∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
    当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
    AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
    故选C.
    4、B
    【解析】
    ∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为x=﹣1.
    ∴抛物线与y轴的交点为A(0,﹣3).
    则与A点以对称轴对称的点是B(2,﹣3).
    若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
    则B点平移后坐标应为(4,﹣3),
    因此将抛物线C向右平移4个单位.
    故选B.
    5、C
    【解析】
    试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.
    考点:众数.
    6、D
    【解析】
    设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论. 
    解:设△OAC和△BAD的直角边长分别为a、b, 
    则点B的坐标为(a+b,a﹣b).
    ∵点B在反比例函数的第一象限图象上, 
    ∴(a+b)×(a﹣b)=a2﹣b2=1. 
    ∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2. 
    故选D.
    点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.
    7、C
    【解析】

    延长线段BN交AC于E.
    ∵AN平分∠BAC,∴∠BAN=∠EAN.
    在△ABN与△AEN中,
    ∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
    ∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
    又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,
    ∴AC=AE+CE=10+6=16.故选C.
    8、C
    【解析】
    根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
    【详解】
    解:∵,
    ∴∠A=60°.
    ∵∠C=90°,
    ∴∠B=90°-60°=30°.
    点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
    9、D
    【解析】
    主视图是从前向后看,即可得图像.
    【详解】
    主视图是一个矩形和一个三角形构成.故选D.
    10、C
    【解析】
    试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.
    考点:旋转的性质.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、30°
    【解析】
    试题解析:∵关于x的方程有两个相等的实数根,

    解得:
    ∴锐角α的度数为30°;
    故答案为30°.
    12、.
    【解析】
    先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.
    【详解】
    解:∵由图可知,黑色方砖4块,共有16块方砖,
    ∴黑色方砖在整个区域中所占的比值
    ∴它停在黑色区域的概率是;
    故答案为.
    【点睛】
    本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    13、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换 同弧所对的圆周角相等
    【解析】
    (1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.
    (2)根据同弧所对的圆周角相等即可得出结论.
    【详解】
    (1)如图2中,

    ∵MN垂直平分AB,EF垂直平分BC,
    ∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),
    ∴OA=OB=OC(等量代换)
    故答案是:
    (2)∵,
    ∴∠APB=∠ACB(同弧所对的圆周角相等).
    故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.
    【点睛】
    考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.
    14、1
    【解析】
    分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.
    详解:根据一次函数可得:点B的坐标为(1,0), ∵BD平分△ABC的面积,BC=3
    ∴点D的横坐标1.5, ∴点D的坐标为, ∵DE:AB=1:1,
    ∴点A的坐标为(1,1), ∴k=1×1=1.

    点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.
    15、4
    【解析】
    (1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;
    (2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.
    【详解】
    (1),

    当O,D,C共线时,OC取最大值,此时OD⊥AB.
    ∵,
    ∴△AOB为等腰直角三角形,
    ∴ ;
    (2)∵BC=AC,CD为AB边的高,
    ∴∠ADC=90°,BD=DA=AB=4,
    ∴CD==3,
    当AC∥y轴时,∠ABO=∠CAB,
    ∴Rt△ABO∽Rt△CAD,
    ∴,即,
    解得,t=,
    当BC∥x轴时,∠BAO=∠CBD,
    ∴Rt△ABO∽Rt△BCD,
    ∴,即,
    解得,t= ,
    则当t=或时,△ABC的边与坐标轴平行.
    故答案为t=或.
    【点睛】
    本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
    16、4﹣π
    【解析】
    由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.
    【详解】
    由题意可以假设A(-m,m),
    则-m2=-4,
    ∴m=≠±2,
    ∴m=2,
    ∴S阴=S正方形-S圆=4-π,
    故答案为4-π.
    【点睛】
    本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题

    三、解答题(共8题,共72分)
    17、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
    (3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
    【详解】
    解:(1)将A,B点坐标代入,得

    解得,
    抛物线的解析式为y=;
    (2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
    2m=﹣1,
    即m=﹣;
    故答案为﹣;
    ②AB的解析式为
    当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
    联立PA与抛物线,得,
    解得(舍),,
    即P(6,﹣14);
    当PB⊥AB时,PB的解析式为y=﹣2x+3,
    联立PB与抛物线,得,
    解得(舍),
    即P(4,﹣5),
    综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
    (3)如图:

    ∵M(t,﹣t2+t+1),Q(t, t+),
    ∴MQ=﹣t2+
    S△MAB=MQ|xB﹣xA|
    =(﹣t2+)×2
    =﹣t2+,
    当t=0时,S取最大值,即M(0,1).
    由勾股定理,得
    AB==,
    设M到AB的距离为h,由三角形的面积,得
    h==.
    点M到直线AB的距离的最大值是.
    【点睛】
    本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
    18、(1)C(2)(3)b<﹣且b≠﹣2或b>
    【解析】
    (1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
    根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
    【详解】
    (1)点B关于直线x=4的对称点为B′(10,﹣),
    ∴直线AB′解析式为:y=﹣,
    当x=4时,y=,
    故答案为:C
    (2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
    作BH⊥l于点H
    ∵点A和A′关于直线l对称
    ∴∠APG=∠A′PG
    ∵∠BPH=∠A′PG
    ∴∠APG=∠BPH
    ∵∠AGP=∠BHP=90°
    ∴△AGP∽△BHP
    ∴,即,
    ∴mn=2,即m=,
    ∵∠APB=α,AP=AP′,
    ∴∠A=∠A′=,
    在Rt△AGP中,tan

    (3)如图,当点P位于直线AB的右下方,∠APB=60°时,
    点P在以AB为弦,所对圆周为60°,且圆心在AB下方
    若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    由对称性可知:∠APQ=∠A′PQ,
    又∠APB=60°
    ∴∠APQ=∠A′PQ=60°
    ∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
    ∴∠BAQ=60°=∠AQB=∠ABQ
    ∴△ABQ是等边三角形
    ∵线段AB为定线段
    ∴点Q为定点
    若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
    ∴直线y=ax+b(a≠0)过定点Q
    连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
    ∵A(2,),B(﹣2,﹣)
    ∴OA=OB=
    ∵△ABQ是等边三角形
    ∴∠AOQ=∠BOQ=90°,OQ=,
    ∴∠AOM+∠NOD=90°
    又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
    ∵∠AMO=∠ONQ=90°
    ∴△AMO∽△ONQ
    ∴,
    ∴,
    ∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
    设直线BQ解析式为y=kx+b
    将B、Q坐标代入得

    解得

    ∴直线BQ的解析式为:y=﹣,
    设直线AQ的解析式为:y=mx+n,
    将A、Q两点代入,
    解得 ,
    ∴直线AQ的解析式为:y=﹣3,
    若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
    若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
    又∵y=ax+b(a≠0),且点P位于AB右下方,
    ∴b<﹣ 且b≠﹣2或b>.
    【点睛】
    本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
    19、(1)CH=AB.;(2)成立,证明见解析;(3)
    【解析】
    (1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
    (2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
    (3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.
    【详解】
    解:(1)如图1,连接BE,

    在正方形ABCD中,
    AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
    ∵点E是DC的中点,DE=EC,
    ∴点F是AD的中点,
    ∴AF=FD,
    ∴EC=AF,
    在△ABF和△CBE中,

    ∴△ABF≌△CBE,
    ∴∠1=∠2,
    ∵EH⊥BF,∠BCE=90°,
    ∴C、H两点都在以BE为直径的圆上,
    ∴∠3=∠2,
    ∴∠1=∠3,
    ∵∠3+∠4=90°,∠1+∠HBC=90°,
    ∴∠4=∠HBC,
    ∴CH=BC,
    又∵AB=BC,
    ∴CH=AB.
    (2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.
    如图2,连接BE,

    在正方形ABCD中,
    AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
    ∵AD=CD,DE=DF,
    ∴AF=CE,
    在△ABF和△CBE中,

    ∴△ABF≌△CBE,
    ∴∠1=∠2,
    ∵EH⊥BF,∠BCE=90°,
    ∴C、H两点都在以BE为直径的圆上,
    ∴∠3=∠2,
    ∴∠1=∠3,
    ∵∠3+∠4=90°,∠1+∠HBC=90°,
    ∴∠4=∠HBC,
    ∴CH=BC,
    又∵AB=BC,
    ∴CH=AB.
    (3)如图3,

    ∵CK≤AC+AK,
    ∴当C、A、K三点共线时,CK的长最大,
    ∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,
    ∴∠KDF=∠HDE,
    ∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,
    ∴∠DFK=∠DEH,
    在△DFK和△DEH中,

    ∴△DFK≌△DEH,
    ∴DK=DH,
    在△DAK和△DCH中,

    ∴△DAK≌△DCH,
    ∴AK=CH
    又∵CH=AB,
    ∴AK=CH=AB,
    ∵AB=3,
    ∴AK=3,AC=3,
    ∴CK=AC+AK=AC+AB=,
    即线段CK长的最大值是.
    考点:四边形综合题.
    20、x=3时,原式=
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
    【详解】
    解:原式=÷

    =,
    解不等式组得,2<x<,
    ∵x取整数,
    ∴x=3,
    当x=3时,原式=.
    【点睛】
    本题主要考查分式额化简求值及一元一次不等式组的整数解.
    21、10
    【解析】
    试题分析:如图:过点C作CD⊥AB于点D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同样在Rt△BCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.
    试题解析:如图:过点C作CD⊥AB于点D,
    由已知可得:∠ACD=32°,∠BCD =37°,
    在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,
    在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,
    ∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,
    答:小岛到海岸线的距离是10米.

    【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.
    22、答案见解析
    【解析】
    由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.
    23、(1)5;(2)36%;(3).
    【解析】
    试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
    (2)根据:小组频数= ,进行求解即可;
    (3)利用列举法求概率即可.
    试题解析:
    (1)E类:50-2-3-22-18=5(人),故答案为:5;
    补图如下:

    (2)D类:1850×100%=36%,故答案为:36%;
    (3)设这5人为
    有以下10种情况:
    其中,两人都在 的概率是: .
    24、(1),;(2)证明见解析.
    【解析】
    试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
    (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
    试题解析:(1)设方程的另一根为x1,
    ∵该方程的一个根为1,∴.解得.
    ∴a的值为,该方程的另一根为.
    (2)∵,
    ∴不论a取何实数,该方程都有两个不相等的实数根.
    考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.

    相关试卷

    浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。

    2022年浙江省宁波市北仑区重点达标名校中考数学适应性模拟试题含解析: 这是一份2022年浙江省宁波市北仑区重点达标名校中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    2022年安徽省合肥市庐阳区重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022年安徽省合肥市庐阳区重点达标名校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,我们知道,下列事件中为必然事件的是,已知,下列说法中,不正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map