终身会员
搜索
    上传资料 赚现金

    2022年云南省昆明市四校联考中考数学适应性模拟试题含解析

    立即下载
    加入资料篮
    2022年云南省昆明市四校联考中考数学适应性模拟试题含解析第1页
    2022年云南省昆明市四校联考中考数学适应性模拟试题含解析第2页
    2022年云南省昆明市四校联考中考数学适应性模拟试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年云南省昆明市四校联考中考数学适应性模拟试题含解析

    展开

    这是一份2022年云南省昆明市四校联考中考数学适应性模拟试题含解析,共21页。试卷主要包含了如图,内接于,若,则,不等式组的解集是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是(  )

    A.相切 B.相交 C.相离 D.无法确定
    2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( )
    A.众数 B.中位数 C.平均数 D.方差
    3.下列几何体中,主视图和俯视图都为矩形的是(   )
    A. B. C. D.
    4.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
    A.60元 B.70元 C.80元 D.90元
    5.实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )

    A.a+b>0 B.a-b<0 C.<0 D.>
    6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    7.如图,内接于,若,则  

    A. B. C. D.
    8.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )

    A. B. C. D.
    9.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为(  )
    A.0.135×106 B.1.35×105 C.13.5×104 D.135×103
    10.不等式组的解集是(  )
    A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
    二、填空题(共7小题,每小题3分,满分21分)
    11.某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_______.
    12.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测试的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是_____.

    13.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.

    14.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.

    15.如图,随机闭合开关,,中的两个,能让两盏灯泡和同时发光的概率为___________.

    16.关于的方程有两个不相等的实数根,那么的取值范围是__________.
    17.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.

    三、解答题(共7小题,满分69分)
    18.(10分)化简(),并说明原代数式的值能否等于-1.
    19.(5分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
    (1)画出△A1B1C1
    (2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
    (3)在(2)的条件下求BC扫过的面积.

    20.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
    (1)求抛物线解析式;
    (2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
    (3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.

    21.(10分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
    (1)求每部型手机和型手机的销售利润;
    (2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
    ①求关于的函数关系式;
    ②该手机店购进型、型手机各多少部,才能使销售总利润最大?
    (3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
    22.(10分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.
    (1)求抛物线的解析式;
    (2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
    (3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).

    23.(12分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:
    ①将△ABC向左平移4个单位,得到△A1B1C1;
    ②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.

    24.(14分) “垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.

    请你根据以上信息,解答下列问题:
    (1)补全上面的条形统计图和扇形统计图;
    (2)所抽取学生“是否随手丢垃圾”情况的众数是   ;
    (3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.
    【详解】
    解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.
    ∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
    ∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
    故选B.

    【点睛】
    本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.
    2、B
    【解析】
    由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.
    【详解】
    由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.
    故选B.
    【点睛】
    本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.
    3、B
    【解析】
    A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;
    B、主视图为矩形,俯视图为矩形,故B选项正确;
    C、主视图,俯视图均为圆,故C选项错误;
    D、主视图为矩形,俯视图为三角形,故D选项错误.
    故选:B.
    4、C
    【解析】
    设销售该商品每月所获总利润为w,
    则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,
    ∴当x=80时,w取得最大值,最大值为3600,
    即售价为80元/件时,销售该商品所获利润最大,故选C.
    5、C
    【解析】
    根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.
    【详解】
    解:由数轴,得b<-1,0<a<1.
    A、a+b<0,故A错误;
    B、a-b>0,故B错误;
    C、<0,故C符合题意;
    D、a2<1<b2,故D错误;
    故选C.
    【点睛】
    本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.
    6、C
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    第一个图形不是轴对称图形,是中心对称图形;
    第二、三、四个图形是轴对称图形,也是中心对称图形;
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、B
    【解析】
    根据圆周角定理求出,根据三角形内角和定理计算即可.
    【详解】
    解:由圆周角定理得,,


    故选:B.
    【点睛】
    本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
    8、C
    【解析】
    从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
    故选C.
    9、B
    【解析】
    根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).
    【详解】
    解:135000用科学记数法表示为:1.35×1.
    故选B.
    【点睛】
    科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    10、D
    【解析】
    由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    分析:设A款魔方的单价为x元,B魔方单价为y元,根据“购买两个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同”,即可得出关于x,y的二元一次方程组,此题得解.
    解:设A魔方的单价为x元,B款魔方的单价为y元,根据题意得:
    故答案为
    点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    12、1
    【解析】
    根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案.
    【详解】
    运动员张华测试成绩的众数是1.
    故答案为1.
    【点睛】
    本题主要考查了众数,关键是掌握众数定义.
    13、或或1
    【解析】
    如图所示:
    ①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
    ②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
    ③当PA=PE时,底边AE=1;
    综上所述:等腰三角形AEP的对边长为或或1;
    故答案为或或1.

    14、或
    【解析】
    分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解.
    【详解】
    当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:

    点的坐标为,B点的坐标为,
    点的坐标为;
    当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:

    点的坐标为,B点的坐标为,
    点的坐标为.
    综上所述:这个旋转中心的坐标为或.
    故答案为或.
    【点睛】
    本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.
    15、
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.
    【详解】
    解:画树状图得:

    由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,
    ∴能让两盏灯泡同时发光的概率,
    故答案为:.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    16、且
    【解析】
    分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
    详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
    ∴△>1且m≠1,
    ∴4-12m>1且m≠1,
    ∴m<且m≠1,
    故答案为:m<且m≠1.
    点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
    17、
    【解析】
    根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可.
    【详解】
    ∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)
    ∴OA=0.5c,OB==,
    ∴S△AOB===
    【点睛】
    此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.

    三、解答题(共7小题,满分69分)
    18、见解析
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.
    【详解】
    原式=[
    =
    =
    =,
    若原代数式的值为﹣1,则=﹣1,
    解得:x=0,
    因为x=0时,原式没有意义,
    所以原代数式的值不能等于﹣1.
    【点睛】
    本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.
    19、(1)见解析;(2)见解析;(3).
    【解析】
    (1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;
    (2)根据图形旋转的性质画出旋转后的图形即可;
    (3)先求出BC长,再利用扇形面积公式,列式计算即可得解.
    【详解】
    解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,
    ∴△ABC向右平移6个单位,向上平移了一个单位,
    ∴A1(4,4),B1(2,0),C1(8,1);
    顺次连接A1,B1,C1三点得到所求的△A1B1C1

    (2)如图所示:△A2B2C即为所求三角形.

    (3)BC的长为:
    BC扫过的面积
    【点睛】
    本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    20、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
    【解析】
    (1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
    【详解】
    (1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
    解得:a=,b=1,c=﹣
    ∴抛物线解析式:y=x2+x﹣
    (2)存在.
    ∵y=x2+x﹣=(x+1)2﹣2
    ∴P点坐标为(﹣1,﹣2)
    ∵△ABP的面积等于△ABE的面积,
    ∴点E到AB的距离等于2,
    设E(a,2),
    ∴a2+a﹣=2
    解得a1=﹣1﹣2,a2=﹣1+2
    ∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
    (3)∵点A(﹣3,0),点B(1,0),
    ∴AB=4
    若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
    ∴AB∥PF,AB=PF=4
    ∵点P坐标(﹣1,﹣2)
    ∴点F坐标为(3,﹣2),(﹣5,﹣2)
    ∴平行四边形的面积=4×2=1
    若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
    ∴AB与PF互相平分
    设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
    ∴ ,
    ∴x=﹣1,y=2
    ∴点F(﹣1,2)
    ∴平行四边形的面积=×4×4=1
    综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
    【点睛】
    本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
    21、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
    【解析】
    (1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
    (2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
    ②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
    (3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
    【详解】
    解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
    根据题意,得,
    解得
    答:每部型手机的销售利润为元,每部型手机的销售利润为元.
    (2)①根据题意,得,即.
    ②根据题意,得,解得.
    ,,
    随的增大而减小.
    为正整数,
    当时,取最大值,.
    即手机店购进部型手机和部型手机的销售利润最大.
    (3)根据题意,得.
    即,.
    ①当时,随的增大而减小,
    当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
    ②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
    ③当时,,随的增大而增大,
    当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
    【点睛】
    本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
    22、(1)抛物线的解析式是y=x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是()或().
    【解析】
    试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
    (2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
    (3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.
    试题解析:
    (1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)
    ∴将A与B两点坐标代入得:,解得:,
    ∴抛物线的解析式是y=x2﹣3x.
    (2)设直线OB的解析式为y=k1x,由点B(8,8),
    得:8=8k1,解得:k1=1
    ∴直线OB的解析式为y=x,
    ∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,
    ∴x﹣m=x2﹣3x,
    ∵抛物线与直线只有一个公共点,
    ∴△=16﹣2m=0,
    解得:m=8,
    此时x1=x2=4,y=x2﹣3x=﹣4,
    ∴D点的坐标为(4,﹣4)
    (3)∵直线OB的解析式为y=x,且A(6,0),
    ∴点A关于直线OB的对称点A′的坐标是(0,6),
    根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,
    设直线A′B的解析式为y=k2x+6,过点(8,8),
    ∴8k2+6=8,解得:k2= ,
    ∴直线A′B的解析式是y=,
    ∵∠NBO=∠ABO,∠A′BO=∠ABO,
    ∴BA′和BN重合,即点N在直线A′B上,
    ∴设点N(n,),又点N在抛物线y=x2﹣3x上,
    ∴=n2﹣3n, 解得:n1=﹣,n2=8(不合题意,舍去)
    ∴N点的坐标为(﹣,).
    如图1,将△NOB沿x轴翻折,得到△N1OB1,

    则N1(﹣,-),B1(8,﹣8),
    ∴O、D、B1都在直线y=﹣x上.
    ∵△P1OD∽△NOB,△NOB≌△N1OB1,
    ∴△P1OD∽△N1OB1,
    ∴,
    ∴点P1的坐标为().
    将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(),
    综上所述,点P的坐标是()或().
    【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.
    23、(1)①见解析;②见解析;(1)1π.
    【解析】
    (1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;
    ②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;
    (1)根据弧长公式计算.
    【详解】
    (1)①如图,△A1B1C1为所作;
    ②如图,△A1B1C1为所作;

    (1)点C1在旋转过程中所经过的路径长=
    【点睛】
    本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.
    24、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【解析】
    (1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;
    (2)根据众数的定义求解即可;
    (3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.
    【详解】
    (1)∵被调查的总人数为60÷30%=200人,
    ∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为×100%=65%,
    补全图形如下:

    (2)由条形图知,B情况出现次数最多,
    所以众数为B,
    故答案为B.
    (3)1500×5%=75,
    答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【点睛】
    本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.

    相关试卷

    云南省昆明市八校联考2021-2022学年中考二模数学试题含解析:

    这是一份云南省昆明市八校联考2021-2022学年中考二模数学试题含解析,共16页。试卷主要包含了答题时请按要求用笔,若与 互为相反数,则x的值是,民族图案是数学文化中的一块瑰宝等内容,欢迎下载使用。

    四川省达州达川区四校联考2021-2022学年中考数学适应性模拟试题含解析:

    这是一份四川省达州达川区四校联考2021-2022学年中考数学适应性模拟试题含解析,共23页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2022年江苏南京建邺区五校联考中考数学适应性模拟试题含解析:

    这是一份2022年江苏南京建邺区五校联考中考数学适应性模拟试题含解析,共25页。试卷主要包含了下列命题中,真命题是,下列事件是必然事件的是,下列各数是不等式组的解是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map