|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年云南省玉溪市中考数学适应性模拟试题含解析
    立即下载
    加入资料篮
    2022年云南省玉溪市中考数学适应性模拟试题含解析01
    2022年云南省玉溪市中考数学适应性模拟试题含解析02
    2022年云南省玉溪市中考数学适应性模拟试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年云南省玉溪市中考数学适应性模拟试题含解析

    展开
    这是一份2022年云南省玉溪市中考数学适应性模拟试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列说法,二次函数y=﹣,下列各式中,计算正确的是,计算的结果等于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是(  )

    A.9.5 B.13.5 C.14.5 D.17
    2.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是(   )

    A.3 B.﹣3 C.6 D.﹣6
    3.下列各式中计算正确的是
    A. B. C. D.
    4.从3、1、-2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )
    A. B. C. D.
    5.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是.其中正确的个数(  )
    A.1 B.2 C.3 D.4
    6.下列图形中,是中心对称图形但不是轴对称图形的是(  )
    A. B. C. D.
    7.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是(  )

    A.掷一枚正六面体的骰子,出现1点的概率
    B.抛一枚硬币,出现正面的概率
    C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
    D.任意写一个整数,它能被2整除的概率
    8.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )
    A. B.2 C. D.
    9.下列各式中,计算正确的是 ( )
    A. B.
    C. D.
    10.计算的结果等于( )
    A.-5 B.5 C. D.
    11.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿(  )
    A.20 B.25 C.30 D.35
    12.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )

    A.4.5cm B.5.5cm C.6.5cm D.7cm
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.

    14.如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_____米.

    15.观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_____.
    16.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.
    17.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:
    x

    ﹣5
    ﹣4
    ﹣3
    ﹣2
    ﹣1

    y

    ﹣8
    ﹣3
    0
    1
    0

    当y<﹣3时,x的取值范围是_____.
    18.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)计算:2tan45°-(-)º-
    20.(6分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
    (1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
    (2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
    21.(6分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.

    22.(8分)图 1 和图 2 中,优弧纸片所在⊙O 的半径为 2,AB=2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A′.

    发现:
    (1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA′= ;
    (2)当 BA′与⊙O 相切时,如图 2,求折痕的长.
    拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A′, O′,设∠MNP=α.
    (1)当α=15°时,过点 A′作 A′C∥MN,如图 3,判断 A′C 与半圆 O 的位置关系,并说明理由;
    (2)如图 4,当α= °时,NA′与半圆 O 相切,当α= °时,点 O′落在上.
    (3)当线段 NO′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.
    23.(8分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
    (1)根据题意,填写下表:
    时间x(h)
    与A地的距离
    0.5
    1.8
    _____
    甲与A地的距离(km)
    5
      
    20
    乙与A地的距离(km)
    0
    12
      
    (2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
    (3)设甲,乙两人之间的距离为y,当y=12时,求x的值.
    24.(10分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.
    求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
    25.(10分)某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:
    (1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?
    (2)扇形统计图中E景点所对应的圆心角的度数是  ,并补全条形统计图.
    (3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率.

    26.(12分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.
    (1)求坡角∠BCD;
    (2)求旗杆AB的高度.
    (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

    27.(12分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.
    (1)求证:AB为⊙C的切线.
    (2)求图中阴影部分的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    ∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,
    ∴DE=AC=4.1,DF=BC=4,EF=AB=1,
    ∴△DEF的周长=(AB+BC+AC)=×(10+8+9)=13.1.
    故选B.
    【点睛】
    考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.
    2、D
    【解析】
    试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.

    考点:反比例函数系数k的几何意义.
    3、B
    【解析】
    根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断.
    【详解】
    A. ,故错误.
    B. ,正确.
    C. ,故错误.
    D. , 故错误.
    故选B.
    【点睛】
    考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.
    4、B
    【解析】
    解:画树状图得:

    ∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率==.故选B.
    点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.
    5、A
    【解析】
    根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得.
    【详解】
    ①平分弦(不是直径)的直径垂直于弦,故此结论错误;
    ②在n次随机实验中,事件A出现m次,则事件A发生的频率,试验次数足够大时可近似地看做事件A的概率,故此结论错误;
    ③各角相等的圆外切多边形是正多边形,此结论正确;
    ④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;
    ⑤若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是.故此结论错误;
    故选:A.
    【点睛】
    本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义.
    6、B
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,故错误;
    B、是中心对称图形,不是轴对称图形,故正确;
    C、是轴对称图形,也是中心对称图形,故错误;
    D、是轴对称图形,也是中心对称图形,故错误.
    故选B.
    【点睛】
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、C
    【解析】
    解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;
    B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;
    C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;
    D.任意写出一个整数,能被2整除的概率为,故此选项错误.
    故选C.
    8、D
    【解析】
    由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.
    【详解】
    解:二次函数y=﹣(x﹣1)1+5的大致图象如下:

    ①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
    解得:m=﹣1.
    当x=n时y取最大值,即1n=﹣(n﹣1)1+5, 解得:n=1或n=﹣1(均不合题意,舍去);
    ②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
    解得:m=﹣1.
    当x=1时y取最大值,即1n=﹣(1﹣1)1+5, 解得:n=,
    或x=n时y取最小值,x=1时y取最大值,
    1m=-(n-1)1+5,n=,
    ∴m=,
    ∵m<0,
    ∴此种情形不合题意,
    所以m+n=﹣1+=.
    9、C
    【解析】
    接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
    【详解】
    A、无法计算,故此选项错误;
    B、a2•a3=a5,故此选项错误;
    C、a3÷a2=a,正确;
    D、(a2b)2=a4b2,故此选项错误.
    故选C.
    【点睛】
    此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
    10、A
    【解析】
    根据有理数的除法法则计算可得.
    【详解】
    解:15÷(-3)=-(15÷3)=-5,
    故选:A.
    【点睛】
    本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.
    11、B
    【解析】
    设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:
    ,,
    ∴,
    ∴当时,(亿),
    ∵400-375=25,
    ∴该行可贷款总量减少了25亿.
    故选B.
    12、A
    【解析】
    试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
    故选A.
    考点:轴对称图形的性质

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、60°
    【解析】
    解:∵BD是⊙O的直径,
    ∴∠BCD=90°(直径所对的圆周角是直角),
    ∵∠CBD=30°,
    ∴∠D=60°(直角三角形的两个锐角互余),
    ∴∠A=∠D=60°(同弧所对的圆周角相等);
    故答案是:60°
    14、42
    【解析】
    延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度.
    【详解】
    延长AB交DC于H,作EG⊥AB于G,如图所示:

    则GH=DE=15米,EG=DH,
    ∵梯坎坡度i=1:2.4,
    ∴BH:CH=1:2.4,
    设BH=x米,则CH=2.4x米,
    在Rt△BCH中,BC=13米,
    由勾股定理得:x2+(2.4x)2=132,
    解得:x=5,
    ∴BH=5米,CH=12米,
    ∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
    ∵∠α=45°,
    ∴∠EAG=90°-45°=45°,
    ∴△AEG是等腰直角三角形,
    ∴AG=EG=32(米),
    ∴AB=AG+BG=32+10=42(米);
    故答案为42
    【点睛】
    本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.
    15、
    【解析】
    试题解析:根据题意得,这一组数的第个数为:
    故答案为
    点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.
    16、1.1
    【解析】
    【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.
    【详解】∵一组数据4,x,1,y,7,9的众数为1,
    ∴x,y中至少有一个是1,
    ∵一组数据4,x,1,y,7,9的平均数为6,
    ∴(4+x+1+y+7+9)=6,
    ∴x+y=11,
    ∴x,y中一个是1,另一个是6,
    ∴这组数为4,1,1,6,7,9,
    ∴这组数据的中位数是×(1+6)=1.1,
    故答案为:1.1.
    【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.
    17、x<﹣4或x>1
    【解析】
    观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y<-3时,x的取值范围即可.
    【详解】
    由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,
    且x=1时,y=-3,
    所以,y<-3时,x的取值范围为x<-4或x>1.
    故答案为x<-4或x>1.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键.
    18、.
    【解析】
    探究规律,利用规律即可解决问题.
    【详解】
    ∵∠MON=45°,
    ∴△C2B2C2为等腰直角三角形,
    ∴C2B2=B2C2=A2B2.
    ∵正方形A2B2C2A2的边长为2,
    ∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,
    同理,可得出:OAn=An-2An=An-2An-2=,
    ∴OA2028=A2028A2027=,
    ∴A2028M=2-.
    故答案为2-.
    【点睛】
    本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、2-
    【解析】
    先求三角函数,再根据实数混合运算法计算.
    【详解】
    解:原式=2×1-1-=1+1-=2-
    【点睛】
    此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.
    20、(1)甲80件,乙20件;(2)x≤90
    【解析】
    (1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
    (2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
    【详解】
    解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
    根据题意得30x+20(100﹣x)=2800,
    解得x=80,
    则100﹣x=20,
    答:甲种奖品购买了80件,乙种奖品购买了20件;
    (2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
    根据题意得:30x+20(100﹣x)≤2900,
    解得:x≤90,
    【点睛】
    本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
    21、(1)证明见解析;(2).
    【解析】
    (1)连接AF、AC,易证∠EAC=∠DAF,再证明ΔEAC≅ΔDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.
    【详解】
    (1)证明:连接,

    ∵正方形旋转至正方形
    ∴,


    在和中,
    ,


    (2).∠DAG、∠BAE、∠FMC、∠CNF;
    由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,
    【点睛】
    本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC≅ΔDAF是解决问题的关键.
    22、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或 45°≤α<90°.
    【解析】
    发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
    (2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
    拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;
    (2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;
    (3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
    【详解】
    发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,

    ∵⊙O的半径为2,AB=2,
    ∴OH==
    在△BOH中,OH=1,BO=2
    ∴∠ABO=30°
    ∵图形沿BP折叠,得到点A的对称点A′.
    ∴∠OBA′=∠ABO=30°
    ∴∠ABA′=60°
    (2)过点O作OG⊥BP,垂足为G,如图2所示.

    ∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
    ∵∠OBH=30°,∴∠ABA′=120°.
    ∴∠A′BP=∠ABP=60°.
    ∴∠OBP=30°.∴OG=OB=1.∴BG=.
    ∵OG⊥BP,∴BG=PG=.
    ∴BP=2.∴折痕的长为2
    拓展:(1)相切.
    分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
    ∵A'C∥MN
    ∴四边形A'HOD是矩形
    ∴A'H=O
    ∵α=15°∴∠A'NH=30
    ∴OD=A'H=A'N=MN=2
    ∴A'C与半圆
    (2)当NA′与半圆O相切时,则ON⊥NA′,
    ∴∠ONA′=2α=90°,
    ∴α=45

    当O′在上时,连接MO′,则可知NO′=MN,
    ∴∠O′MN=0°
    ∴∠MNO′=60°,
    ∴α=30°,
    故答案为:45°;30°.
    (3)∵点P,M不重合,∴α>0,
    由(2)可知当α增大到30°时,点O′在半圆上,
    ∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
    当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
    当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
    ∴α<90°,
    ∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
    综上所述0°<α<30°或45°≤α<90°.
    【点睛】
    本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
    23、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6
    【解析】
    (Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;
    (Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;
    (Ⅲ)根据题意,得,然后分别将y=12代入即可求得答案.
    【详解】
    (Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,
    当时间x=1.8 时,甲离开A的距离是10×1.8=18(km),
    当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),
    此时乙行驶的时间是2﹣1.5=0. 5(时),
    所以乙离开A的距离是40×0.5=20(km),
    故填写下表:

    (Ⅱ)由题意知:
    y1=10x(0≤x≤1.5),
    y2=;
    (Ⅲ)根据题意,得,
    当0≤x≤1.5时,由10x=12,得x=1.2,
    当1.5<x≤2时,由﹣30x+60=12,得x=1.6,
    因此,当y=12时,x的值是1.2或1.6.
    【点睛】
    本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.
    24、(1);(2)点P的坐标是(0,4)或(0,-4).
    【解析】
    (1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.
    (2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.
    【详解】
    (1)∵B(4,2),四边形OABC是矩形,
    ∴OA=BC=2.
    将y=2代入3得:x=2,∴M(2,2).
    把M的坐标代入得:k=4,
    ∴反比例函数的解析式是;
    (2).
    ∵△OPM的面积与四边形BMON的面积相等,
    ∴.
    ∵AM=2,
    ∴OP=4.
    ∴点P的坐标是(0,4)或(0,-4).
    25、(1)50万人;(2)43.2°;统计图见解析(3).
    【解析】
    (1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数;
    (2)先用360°乘以E的百分比求得E景点所对应的圆心角的度数,再根据B、D景点接待
    游客数补全条形统计图;
    (3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概
    率公式进行计算,即可得到同时选择去同一景点的概率.
    【详解】
    解:(1)该市景点共接待游客数为:15÷30%=50(万人);
    (2)扇形统计图中E景点所对应的圆心角的度数是:×360°=43.2°,
    B景点的人数为50×24%=12(万人)、D景点的人数为50×18%=9(万人),
    补全条形统计图如下:

    故答案为43.2°;
    (3)画树状图可得:

    ∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
    ∴P(同时选择去同一个景点)
    【点睛】
    本题考查的是统计以及用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    26、旗杆AB的高度为6.4米.
    【解析】
    分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;
    (2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.
    本题解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD= ,
    ∴∠BCD=30°;
    (2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,
    则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),
    ∵∠AEG=45°,∴AG=DE=10(米),
    在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),
    则AB=AG−BG=10−3.6=6.4(米).
    答:旗杆AB的高度为6.4米。
    27、 (1)证明见解析;(2)1-π.
    【解析】
    (1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
    (2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
    【详解】
    (1)过C作CF⊥AB于F.
    ∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
    ∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
    ∵CF⊥AB,∴AB为⊙C的切线;

    (2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
    【点睛】
    本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.

    相关试卷

    2024年云南省玉溪市中考模拟数学试题: 这是一份2024年云南省玉溪市中考模拟数学试题,共4页。

    2023年云南省玉溪市红塔区中考数学模拟试卷(含解析): 这是一份2023年云南省玉溪市红塔区中考数学模拟试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    云南省玉溪市江川县2022年中考数学模拟试题含解析: 这是一份云南省玉溪市江川县2022年中考数学模拟试题含解析,共19页。试卷主要包含了下列图形不是正方体展开图的是,计算÷的结果是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map