开学活动
搜索
    上传资料 赚现金

    2022年云南省云南昆明市盘龙区中考数学模拟预测题含解析

    2022年云南省云南昆明市盘龙区中考数学模拟预测题含解析第1页
    2022年云南省云南昆明市盘龙区中考数学模拟预测题含解析第2页
    2022年云南省云南昆明市盘龙区中考数学模拟预测题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年云南省云南昆明市盘龙区中考数学模拟预测题含解析

    展开

    这是一份2022年云南省云南昆明市盘龙区中考数学模拟预测题含解析,共24页。试卷主要包含了若,则x-y的正确结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是

    A.点A和点C B.点B和点D
    C.点A和点D D.点B和点C
    2.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为(  )

    A.50m B.25m C.(50﹣)m D.(50﹣25)m
    3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为(  )

    A. B. C.4 D.2+
    4.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为(  )

    A.80° B.70° C.60° D.40°
    5.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )

    A.15m B.17m C.18m D.20m
    6.已知反比例函数,下列结论不正确的是(  )
    A.图象必经过点(﹣1,2) B.y随x的增大而增大
    C.图象在第二、四象限内 D.若,则
    7.若,则x-y的正确结果是( )
    A.-1 B.1 C.-5 D.5
    8.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是(  )
    A. B. C. D.
    9.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(     )
    A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5
    10.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为(  )

    A. B. C. D.
    11.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:
    文化程度
    高中
    大专
    本科
    硕士
    博士
    人数
    9
    17
    20
    9
    5
    关于这组文化程度的人数数据,以下说法正确的是:( )
    A.众数是20 B.中位数是17 C.平均数是12 D.方差是26
    12.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于(  )

    A.42° B.28° C.21° D.20°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.
    14.计算2x3·x2的结果是_______.
    15.分解因式:4x2﹣36=___________.
    16.分解因式:ab2﹣9a=_____.
    17.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
    18.已知抛物线y=ax2+bx+c=0(a≠0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 ________________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
    (1)求证:四边形ABCD是菱形.
    (2)若AC=8,AB=5,求ED的长.

    20.(6分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.

    21.(6分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.

    22.(8分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.

    请你根据图中信息,回答下列问题:
    (1)求本次调查的学生人数,并补全条形统计图;
    (2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;
    (3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
    23.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿C→A→B以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作⊙O.
    (1)当时,求△PCQ的面积;
    (2)设⊙O的面积为s,求s与t的函数关系式;
    (3)当点Q在AB上运动时,⊙O与Rt△ABC的一边相切,求t的值.

    24.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
    (1)求证:△AEF是等腰直角三角形;
    (2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
    (3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.

    25.(10分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
    品种
    A
    B
    原来的运费
    45
    25
    现在的运费
    30
    20
    (1)求每次运输的农产品中A,B产品各有多少件;
    (2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.
    26.(12分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.

    27.(12分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
    (1)如图1,线段EH、CH、AE之间的数量关系是   ;
    (2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据相反数的定义进行解答即可.
    【详解】
    解:由A表示-2,B表示-1,C表示0.75,D表示2.
    根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.
    故答案为C.
    【点睛】
    本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.
    2、C
    【解析】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
    【详解】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
    则AB=MN,AM=BN.
    在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
    在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
    则AB=MN=(50﹣)m.
    故选C.

    【点睛】
    本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
    3、B
    【解析】
    根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
    【详解】
    如图:

    BC=AB=AC=1,
    ∠BCB′=120°,
    ∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
    4、B
    【解析】
    根据平行线的性质得到根据BE平分∠ABD,即可求出∠1的度数.
    【详解】
    解:∵BD∥AC,


    ∵BE平分∠ABD,

    故选B.
    【点睛】
    本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.
    5、C
    【解析】
    连结OA,如图所示:

    ∵CD⊥AB,
    ∴AD=BD=AB=12m.
    在Rt△OAD中,OA=13,OD=,
    所以CD=OC+OD=13+5=18m.
    故选C.
    6、B
    【解析】
    试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
    试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
    B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
    C、命题正确;
    D、命题正确.
    故选B.
    考点:反比例函数的性质
    7、A
    【解析】
    由题意,得
    x-2=0,1-y=0,
    解得x=2,y=1.
    x-y=2-1=-1,
    故选:A.
    8、D
    【解析】
    根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.
    【详解】
    解:∵ab<0,
    ∴分两种情况:
    (1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
    (2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.
    故选D
    【点睛】
    本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.
    9、A
    【解析】
    分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.
    详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,
    ∴4=|2a+2|,a+2≠3,
    解得:a=−3,
    故选A.
    点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.
    10、D
    【解析】
    延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
    【详解】
    解:延长BO交⊙O于D,连接CD,

    则∠BCD=90°,∠D=∠A=60°,
    ∴∠CBD=30°,
    ∵BD=2R,
    ∴DC=R,
    ∴BC=R,
    故选D.
    【点睛】
    此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
    11、C
    【解析】
    根据众数、中位数、平均数以及方差的概念求解.
    【详解】
    A、这组数据中9出现的次数最多,众数为9,故本选项错误;
    B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;
    C、平均数==12,故本选项正确;
    D、方差= [(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]= ,故本选项错误.
    故选C.
    【点睛】
    本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.
    12、B
    【解析】
    利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
    【详解】
    解:连结OD,如图,

    ∵OB=DE,OB=OD,
    ∴DO=DE,
    ∴∠E=∠DOE,
    ∵∠1=∠DOE+∠E,
    ∴∠1=2∠E,
    而OC=OD,
    ∴∠C=∠1,
    ∴∠C=2∠E,
    ∴∠AOC=∠C+∠E=3∠E,
    ∴∠E=∠AOC=×84°=28°.
    故选:B.
    【点睛】
    本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、20
    【解析】
    先求出半径为30cm且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.
    【详解】
    =40π.
    设这个圆锥形纸帽的底面半径为r.
    根据题意,得40π=2πr,
    解得r=20cm.
    故答案是:20.
    【点睛】
    解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.
    14、
    【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.
    故答案为:2x5
    15、4(x+3)(x﹣3)
    【解析】
    分析:首先提取公因式4,然后再利用平方差公式进行因式分解.
    详解:原式=.
    点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.
    16、a(b+3)(b﹣3).
    【解析】
    根据提公因式,平方差公式,可得答案.
    【详解】
    解:原式=a(b2﹣9)
    =a(b+3)(b﹣3),
    故答案为:a(b+3)(b﹣3).
    【点睛】
    本题考查了因式分解,一提,二套,三检查,分解要彻底.
    17、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
    【解析】
    让横坐标、纵坐标为负数即可.
    【详解】
    在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
    故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
    18、或x=-1
    【解析】
    由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴.
    【详解】
    ∵点A的坐标为(-2,0),线段AB的长为8,
    ∴点B的坐标为(1,0)或(-10,0).
    ∵抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,
    ∴抛物线的对称轴为直线x==2或x==-1.
    故答案为x=2或x=-1.
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析(2)4-3
    【解析】
    试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
    试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
    ∵△EAC是等边三角形, EO是AC边上中线,
    ∴EO⊥AC,即BD⊥AC,
    ∴平行四边形ABCD是是菱形.
    (2) ∵平行四边形ABCD是是菱形,
    ∴AO=CO==4,DO=BO,
    ∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
    在Rt△ABO中,由勾股定理可得:BO=3,
    ∴DO=BO=3,
    在Rt△EAO中,由勾股定理可得:EO=4
    ∴ED=EO-DO=4-3.
    20、证明见解析.
    【解析】
    连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
    【详解】
    证明:如图,连接,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,


    ∴,则,
    ∴,
    ∴,即,
    在和中,
    ∵,
    ∴,

    ∵是的切线,则,
    ∴,
    ∴,则,
    ∴是的切线.

    【点睛】
    本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
    21、(1)75°(2)见解析
    【解析】
    (1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;
    (2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.
    【详解】
    解:(1)∵△ABC是等边三角形
    ∴∠ACB=60°,BC=AC
    ∵等边△ABC绕点C顺时针旋转90°得到△EFC
    ∴CF=BC,∠BCF=90°,AC=CE
    ∴CF=AC
    ∵∠BCF=90°,∠ACB=60°
    ∴∠ACF=∠BCF﹣∠ACB=30°
    ∴∠CFA=(180°﹣∠ACF)=75°
    (2)∵△ABC和△EFC是等边三角形
    ∴∠ACB=60°,∠E=60°
    ∵CD平分∠ACE
    ∴∠ACD=∠ECD
    ∵∠ACD=∠ECD,CD=CD,CA=CE,
    ∴△ECD≌△ACD(SAS)
    ∴∠DAC=∠E=60°
    ∴∠DAC=∠ACB
    ∴AD∥BC
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
    22、(1)共调查了50名学生;统计图见解析;(2)72°;(3).
    【解析】
    (1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;
    (2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;
    (3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.
    【详解】
    解:(1)14÷28%=50,
    ∴本次共调查了50名学生.
    补全条形统计图如下.

    (2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.
    (3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.

    共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,
    ∴抽取的2名学生恰好来自同一个班级的概率P==.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    23、(1);(2)①;②;(3)t的值为或1或.
    【解析】
    (1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;
    (2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;
    (3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.
    【详解】
    (1)当t=时,CQ=4t=4×=2,即此时Q与A重合,
    CP=t=,
    ∵∠ACB=90°,
    ∴S△PCQ=CQ•PC=×2×=;
    (2)分两种情况:
    ①当Q在边AC上运动时,0<t≤2,如图1,
    由题意得:CQ=4t,CP=t,
    由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
    ∴S=π=;
    ②当Q在边AB上运动时,2<t<4如图2,
    设⊙O与AB的另一个交点为D,连接PD,
    ∵CP=t,AC+AQ=4t,
    ∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
    ∵PQ为⊙O的直径,
    ∴∠PDQ=90°,
    Rt△ACB中,AC=2cm,AB=4cm,
    ∴∠B=30°,
    Rt△PDB中,PD=PB=,
    ∴BD=,
    ∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
    ∴PQ==,
    ∴S=π==;
    (3)分三种情况:
    ①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,
    ∴OE⊥AC,
    ∵AQ=4t﹣2,
    Rt△AFQ中,∠AQF=30°,
    ∴AF=2t﹣1,
    ∴FQ=(2t﹣1),
    ∵FQ∥OE∥PC,OQ=OP,
    ∴EF=CE,
    ∴FQ+PC=2OE=PQ,
    ∴(2t﹣1)+t=,
    解得:t=或﹣(舍);
    ②当⊙O与BC相切时,如图4,
    此时PQ⊥BC,
    ∵BQ=6﹣4t,PB=2﹣t,
    ∴cos30°=,
    ∴,
    ∴t=1;
    ③当⊙O与BA相切时,如图5,
    此时PQ⊥BA,
    ∵BQ=6﹣4t,PB=2﹣t,
    ∴cos30°=,
    ∴,
    ∴t=,
    综上所述,t的值为或1或.

    【点睛】
    本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想.
    24、(1)证明见解析;(2)证明见解析;(3)4.
    【解析】
    试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
    (2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
    (3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
    试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
    (2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
    (3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.

    点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
    25、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.
    【解析】
    (1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.
    【详解】
    解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,
    根据题意得:

    解得:,
    答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,
    增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,
    根据题意得:W=30(10+m)+20(38-m)=10m+1060,
    由题意得:38-m≤2(10+m),
    解得:m≥6,
    即6≤m≤8,
    ∵一次函数W随m的增大而增大
    ∴当m=6时,W最小=1120,
    答:产品件数增加后,每次运费最少需要1120元.
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.
    26、见解析
    【解析】
    解:不公平,理由如下:
    列表得:

    1
    2
    3
    2
    1,2
    2,2
    3,2
    3
    1,3
    2,3
    3,3
    4
    1,4
    2,4
    3,4
    由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,
    则甲获胜的概率为、乙获胜的概率为,
    ∵,
    ∴这个游戏对甲、乙双方不公平.
    【点睛】
    考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    27、 (1) EH2+CH2=AE2;(2)见解析.
    【解析】
    分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
    (2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.
    详解:
    (1)EH2+CH2=AE2,
    如图1,过E作EM⊥AD于M,
    ∵四边形ABCD是菱形,
    ∴AD=CD,∠ADE=∠CDE,
    ∵EH⊥CD,
    ∴∠DME=∠DHE=90°,
    在△DME与△DHE中,

    ∴△DME≌△DHE,
    ∴EM=EH,DM=DH,
    ∴AM=CH,
    在Rt△AME中,AE2=AM2+EM2,
    ∴AE2=EH2+CH2;
    故答案为:EH2+CH2=AE2;
    (2)如图2,
    ∵菱形ABCD,∠ADC=60°,
    ∴∠BDC=∠BDA=30°,DA=DC,
    ∵EH⊥CD,
    ∴∠DEH=60°,
    在CH上截取HG,使HG=EH,
    ∵DH⊥EG,∴ED=DG,
    又∵∠DEG=60°,
    ∴△DEG是等边三角形,
    ∴∠EDG=60°,
    ∵∠EDG=∠ADC=60°,
    ∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,
    ∴∠ADE=∠CDG,
    在△DAE与△DCG中,

    ∴△DAE≌△DCG,
    ∴AE=GC,
    ∵CH=CG+GH,
    ∴CH=AE+EH.

    点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.

    相关试卷

    2024年云南省昆明市部分中学中考数学模拟试卷(含解析):

    这是一份2024年云南省昆明市部分中学中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年云南省昆明市盘龙区中考数学二模试卷(含解析):

    这是一份2023年云南省昆明市盘龙区中考数学二模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    云南省云南昆明市盘龙区达标名校2021-2022学年中考一模数学试题含解析:

    这是一份云南省云南昆明市盘龙区达标名校2021-2022学年中考一模数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中正确的是,下列各式计算正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map