2022年山东省烟台市重点名校中考数学模试卷含解析
展开这是一份2022年山东省烟台市重点名校中考数学模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,用一根长为a,已知等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )
A.中位数 B.众数 C.平均数 D.方差
2.下列几何体是棱锥的是( )
A. B. C. D.
3.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B. C. D.
4.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )
A.甲 B.乙 C.甲乙同样稳定 D.无法确定
5. “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为
A. B. C. D.
6.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是( )
A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC
7.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )
A.4cm B.8cm C.(a+4)cm D.(a+8)cm
8.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是( )
A. B. C. D.
9.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).
…
…
…
…
A.只有一个交点 B.有两个交点,且它们分别在轴两侧
C.有两个交点,且它们均在轴同侧 D.无交点
10.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
A.31cm B.41cm C.51cm D.61cm
11.下列式子一定成立的是( )
A.2a+3a=6a B.x8÷x2=x4
C. D.(﹣a﹣2)3=﹣
12.等式组的解集在下列数轴上表示正确的是( ).
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(∠ACD和∠BCD)分别是60°,45°.那么路况警示牌AB的高度为_____.
14.若xay与3x2yb是同类项,则ab的值为_____.
15.如图所示,把一张长方形纸片沿折叠后,点分别落在点的位置.若,则等于________.
16.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
17.二次函数y=x2-2x+1的对称轴方程是x=_______.
18.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
20.(6分)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元)
1
2
2.5
3
5
yA(万元)
0.4
0.8
1
1.2
2
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式;
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
21.(6分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
22.(8分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,
①求w与x之间的函数关系式;
②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.
23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
请根据所给信息,解答以下问题:
(1)表中a=______,b=______;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
24.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
25.(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.
① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;
② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)
26.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.
27.(12分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
求楼间距AB;
若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,
故选A.
【点睛】
本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.
2、D
【解析】
分析:根据棱锥的概念判断即可.
A是三棱柱,错误;
B是圆柱,错误;
C是圆锥,错误;
D是四棱锥,正确.
故选D.
点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
3、C
【解析】
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
4、A
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵S甲2=1.4,S乙2=2.5,
∴S甲2<S乙2,
∴甲、乙两名同学成绩更稳定的是甲;
故选A.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5、C
【解析】
分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
详解:1800000这个数用科学记数法可以表示为
故选C.
点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
6、D
【解析】
由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;
【详解】
A正确;理由:
在△ABD和△ACD中,
∵∠1=∠2,AD=AD,∠ADB=∠ADC,
∴△ABD≌△ACD(ASA);
B正确;理由:
在△ABD和△ACD中,
∵∠1=∠2,∠B=∠C,AD=AD
∴△ABD≌△ACD(AAS);
C正确;理由:
在△ABD和△ACD中,
∵AB=AC,∠1=∠2,AD=AD,
∴△ABD≌△ACD(SAS);
D不正确,由这些条件不能判定三角形全等;
故选:D.
【点睛】
本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.
7、B
【解析】
【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.
【详解】∵原正方形的周长为acm,
∴原正方形的边长为cm,
∵将它按图的方式向外等距扩1cm,
∴新正方形的边长为(+2)cm,
则新正方形的周长为4(+2)=a+8(cm),
因此需要增加的长度为a+8﹣a=8cm,
故选B.
【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.
8、B
【解析】
试题解析:由图可知可以瞄准的点有2个.
.
∴B球一次反弹后击中A球的概率是.
故选B.
9、B
【解析】
根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.
【详解】
解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上
则该二次函数的图像与轴有两个交点,且它们分别在轴两侧
故选B.
【点睛】
本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.
10、C
【解析】
∵DG是AB边的垂直平分线,
∴GA=GB,
△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
∴△ABC的周长=AC+BC+AB=51cm,
故选C.
11、D
【解析】
根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.
【详解】
解:A:2a+3a=(2+3)a=5a,故A错误;
B:x8÷x2=x8-2=x6,故B错误;
C:=,故C错误;
D:(-a-2)3=-a-6=-,故D正确.
故选D.
【点睛】
本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.
12、B
【解析】
【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.
【详解】,
解不等式①得,x>-3,
解不等式②得,x≤2,
在数轴上表示①、②的解集如图所示,
故选B.
【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、m
【解析】
由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.
【详解】
在Rt△ADC中,∠ACD=60°,AD=4
∴tan60°==
∴CD=
∵在Rt△BCD中,∠BAD=45∘,CD=
∴BD=CD=.
∴AB=AD-BD=4-=
路况警示牌AB的高度为m.
故答案为:m.
【点睛】
解直角三角形的应用-仰角俯角问题.
14、2
【解析】
试题解析:∵xay与3x2yb是同类项,
∴a=2,b=1,
则ab=2.
15、50°
【解析】
先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.
【详解】
∵AD∥BC,∠EFB=65°,
∴∠DEF=65°,
又∵∠DEF=∠D′EF,
∴∠D′EF=65°,
∴∠AED′=50°.
【点睛】
本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.
16、.
【解析】
试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
试题解析:∵在△ABC中,∠C=90°,
∴∠A+∠B=90°,
∴cosB=sinA=.
考点:互余两角三角函数的关系.
17、1
【解析】
利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.
【详解】
∵-=-=1,
∴x=1.
故答案为:1
【点睛】
本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.
18、1
【解析】
根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得SEBMF=SFGDN,得SFGDN.
【详解】
∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.
【点睛】
本题考查面积的求解,解题的关键是读懂题意.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
【解析】
(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
【详解】
(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
故答案为x,y;
(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
故答案为2;
(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
【点睛】
本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.
20、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
【解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
【详解】
解:(1)yB=-0.2x2+1.6x,
(2)一次函数,yA=0.4x,
(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴当x=3时,W最大值=7.8,
答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
21、赚了520元
【解析】
(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;
(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.
【详解】
(1)设第一次购书的单价为x元,
根据题意得:+10=,
解得:x=5,
经检验,x=5是原方程的解,
答:第一次购书的进价是5元;
(2)第一次购书为1200÷5=240(本),
第二次购书为240+10=250(本),
第一次赚钱为240×(7﹣5)=480(元),
第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
所以两次共赚钱480+40=520(元),
答:该老板两次售书总体上是赚钱了,共赚了520元.
【点睛】
此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
22、(1);(2)①;②
【解析】
(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;
(2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;
②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.
【详解】
解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,
根据题意,得:8x+6y+5(80-x-y)=480,
整理,得:y=-3x+80;
(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,
把y=-3x+80代入,得:w=-16x+5760,
②种植的总成本为5600元时,w=-16x+5760=5600,
解得x=10,y=-3×10+80=50,
即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名.
采访到种植C种树苗工人的概率为:=.
【点睛】
本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.
23、(1)0.3 ,45;(2)108°;(3).
【解析】
(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
(2)B组的频率乘以360°即可求得答案;
(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
【详解】
(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
故答案为0.3,45;
(2)360°×0.3=108°.
答:扇形统计图中B组对应扇形的圆心角为108°.
(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:
∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、 (1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(3) 70台A型电脑和30台B型电脑的销售利润最大
【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,
(2)①据题意得,y=﹣50x+15000,
②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,
(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.
【详解】
解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得
解得
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.
(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,
②据题意得,100﹣x≤2x,解得x≥33,
∵y=﹣50x+15000,﹣50<0,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100﹣x=66,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,
33≤x≤70
①当0<m<50时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②m=50时,m﹣50=0,y=15000,
即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;
③当50<m<100时,m﹣50>0,y随x的增大而增大,
∴当x=70时,y取得最大值.
即商店购进70台A型电脑和30台B型电脑的销售利润最大.
【点睛】
本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.
25、解:(1)22.1.
(2)设需要售出x部汽车,
由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),
当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,
解这个方程,得x1=-20(不合题意,舍去),x2=2.
当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,
解这个方程,得x1=-24(不合题意,舍去),x2=3.
∵3<10,∴x2=3舍去.
答:要卖出2部汽车.
【解析】
一元二次方程的应用.
(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,
(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.
26、(1)见详解;(2)x=18;(3) 416 m2.
【解析】
(1)根据“垂直于墙的长度=可得函数解析式;
(2)根据矩形的面积公式列方程求解可得;
(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.
【详解】
(1)根据题意知,y==-x+;
(2)根据题意,得(-x+)x=384,
解得x=18或x=32.
∵墙的长度为24 m,∴x=18.
(3)设菜园的面积是S,则S=(-x+)x=-x2+x=- (x-25)2+.
∵-<0,∴当x<25时,S随x的增大而增大.
∵x≤24,
∴当x=24时,S取得最大值,最大值为416.
答:菜园的最大面积为416 m2.
【点睛】
本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.
27、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【解析】
如图,作于M,于则,设想办法构建方程即可解决问题.
求出AC,AD,分两种情形解决问题即可.
【详解】
解:如图,作于M,于则,设.
在中,,
在中,,
,
,
,
的长为50m.
由可知:,
,,
,,
冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【点睛】
考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
相关试卷
这是一份2023年山东省烟台市中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年山东省莒南县重点名校中考数学模试卷含解析,共16页。试卷主要包含了剪纸是我国传统的民间艺术等内容,欢迎下载使用。
这是一份2022年山东省青岛市黄岛区重点达标名校中考数学模试卷含解析,共21页。试卷主要包含了若 || =-,则一定是,的相反数是等内容,欢迎下载使用。