|试卷下载
搜索
    上传资料 赚现金
    2022届山东省泰安市新泰市重点达标名校中考数学模试卷含解析
    立即下载
    加入资料篮
    2022届山东省泰安市新泰市重点达标名校中考数学模试卷含解析01
    2022届山东省泰安市新泰市重点达标名校中考数学模试卷含解析02
    2022届山东省泰安市新泰市重点达标名校中考数学模试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省泰安市新泰市重点达标名校中考数学模试卷含解析

    展开
    这是一份2022届山东省泰安市新泰市重点达标名校中考数学模试卷含解析,共24页。试卷主要包含了如果,那么代数式的值是,若点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为(  )
    A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
    2.如图,在中,,的垂直平分线交于点,垂足为.如果,则的长为( )

    A.2 B.3 C.4 D.6
    3.如图,在△ABC中,点D,E分别在边AB,AC上,且,则的值为

    A. B. C. D.
    4.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是(     )
    A.2                        B.3                        C.4                                   D.5
    5.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是(  )

    A. cm B.3cm C.4cm D.4cm
    6. “a是实数,|a|≥0”这一事件是( )
    A.必然事件 B.不确定事件 C.不可能事件 D.随机事件
    7.如果,那么代数式的值是( )
    A.6 B.2 C.-2 D.-6
    8.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是(  )
    A. B.
    C. D.
    9.已知一次函数且随的增大而增大,那么它的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    10.如果m的倒数是﹣1,那么m2018等于(  )
    A.1 B.﹣1 C.2018 D.﹣2018
    11.在平面直角坐标系中,二次函数y=a(x–h)2+k(a<0)的图象可能是
    A. B.
    C. D.
    12.如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是  

    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1+S2+S3+…+Sn=_____(用含n的代数式表示)

    14.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.

    15.按照一定规律排列依次为,…..按此规律,这列数中的第100个数是_____.
    16.如果关于x的方程的两个实数根分别为x1,x2,那么的值为________________.
    17.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.

    18.下列对于随机事件的概率的描述:
    ①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;
    ②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;
    ③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85
    其中合理的有______(只填写序号).
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)先化简,再求值:,其中a为不等式组的整数解.
    20.(6分)问题探究
    (1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为   ;
    (2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
    问题解决
    (3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.

    21.(6分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).

    22.(8分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:

    请根据以上统计图提供的信息,解答下列问题:
    (1)共抽取   名学生进行问卷调查;
    (2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;
    (3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.
    (4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.
    23.(8分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B”的学生人数.
    24.(10分)计算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.
    25.(10分)如图,中,于,点分别是的中点.

    (1)求证:四边形是菱形
    (2)如果,求四边形的面积
    26.(12分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)

    27.(12分)如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.

    (1)求抛物线的解析式;
    (2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
    (3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据科学记数法的表示方法解答.
    【详解】
    解:把这个数用科学记数法表示为.
    故选:.
    【点睛】
    此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
    2、C
    【解析】
    先利用垂直平分线的性质证明BE=CE=8,再在Rt△BED中利用30°角的性质即可求解ED.
    【详解】
    解:因为垂直平分,
    所以,
    在中,,
    则;
    故选:C.
    【点睛】
    本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.
    3、C
    【解析】
    ∵,∠A=∠A,
    ∴△ABC∽△AED。∴。
    ∴。故选C。
    4、D
    【解析】
    设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.
    【详解】
    设这个数是a,
    把x=1代入得:(-2+1)=1-,
    ∴1=1-,
    解得:a=1.
    故选:D.
    【点睛】
    本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.
    5、C
    【解析】
    利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.
    【详解】
    L==4π(cm);
    圆锥的底面半径为4π÷2π=2(cm),
    ∴这个圆锥形筒的高为(cm).
    故选C.
    【点睛】
    此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.
    6、A
    【解析】
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.
    7、A
    【解析】
    【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
    【详解】∵3a2+5a-1=0,
    ∴3a2+5a=1,
    ∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
    故选A.
    【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
    8、D
    【解析】
    将,代入,得,,然后分析与的正负,即可得到的大致图象.
    【详解】
    将,代入,得,,
    即,.
    ∴.
    ∵,∴,∴.
    即与异号.
    ∴.
    又∵,
    故选D.
    【点睛】
    本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
    9、B
    【解析】
    根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.
    【详解】
    解:∵一次函数y=kx-3且y随x的增大而增大,
    ∴它的图象经过一、三、四象限,
    ∴不经过第二象限,
    故选:B.
    【点睛】
    本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.
    10、A
    【解析】
    因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是﹣1,则m=-1,
    然后再代入m2018计算即可.
    【详解】
    因为m的倒数是﹣1,
    所以m=-1,
    所以m2018=(-1)2018=1,故选A.
    【点睛】
    本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.
    11、B
    【解析】
    根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.
    【详解】
    二次函数y=a(x﹣h)2+k(a<0)
    二次函数开口向下.即B成立.
    故答案选:B.
    【点睛】
    本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.
    12、A
    【解析】
    依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象.
    【详解】
    解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,

    抛物线向上平移5个单位后可得:,即,
    形成的图象是A选项.
    故选A.
    【点睛】
    本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、10﹣
    【解析】
    过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案.
    【详解】
    如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,
    则点Pn+1的坐标为(2n+2,),
    则OB=,
    ∵点P1的横坐标为2,
    ∴点P1的纵坐标为5,
    ∴AB=5﹣,
    ∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,
    故答案为10﹣.

    【点睛】
    本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.
    14、
    【解析】
    试题解析:连接AE,

    在Rt三角形ADE中,AE=4,AD=2,
    ∴∠DEA=30°,
    ∵AB∥CD,
    ∴∠EAB=∠DEA=30°,
    ∴的长度为:=.
    考点:弧长的计算.
    15、
    【解析】
    根据按一定规律排列的一列数依次为…,可得第n个数为,据此可得第100个数.
    【详解】
    由题意,数列可改写成,…,
    则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,
    ∴第n个数为=,
    ∴这列数中的第100个数为=;
    故答案为:.
    【点睛】
    本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.
    16、
    【解析】
    由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.
    【详解】
    ∵方程x2+kx+=0有两个实数根,
    ∴b2-4ac=k2-4(k2-3k+)=-2k2+12k-18=-2(k-3)2≥0,
    ∴k=3,
    代入方程得:x2+3x+=(x+)2=0,
    解得:x1=x2=-,
    则=-.
    故答案为-.
    【点睛】
    此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.
    17、3﹣或1
    【解析】
    分两种情况:情况一:如图一所示,当∠A'DE=90°时;
    情况二:如图二所示,当∠A'ED=90°时.
    【详解】
    解:如图,当∠A'DE=90°时,△A'ED为直角三角形,

    ∵∠A'=∠A=30°,
    ∴∠A'ED=60°=∠BEC=∠B,
    ∴△BEC是等边三角形,
    ∴BE=BC=1,
    又∵Rt△ABC中,AB=1BC=4,
    ∴AE=1,
    设AD=A'D=x,则DE=1﹣x,
    ∵Rt△A'DE中,A'D=DE,
    ∴x=(1﹣x),
    解得x=3﹣,
    即AD的长为3﹣;
    如图,当∠A'ED=90°时,△A'ED为直角三角形,

    此时∠BEC=90°,∠B=60°,
    ∴∠BCE=30°,
    ∴BE=BC=1,
    又∵Rt△ABC中,AB=1BC=4,
    ∴AE=4﹣1=3,
    ∴DE=3﹣x,
    设AD=A'D=x,则
    Rt△A'DE中,A'D=1DE,即x=1(3﹣x),
    解得x=1,
    即AD的长为1;
    综上所述,即AD的长为3﹣或1.
    故答案为3﹣或1.
    【点睛】
    本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.
    18、②③
    【解析】
    大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.根据事件的类型及概率的意义找到正确选项即可.
    【详解】
    解:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;
    ②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是,此结论正确;
    ③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;
    故答案为:②③.
    【点睛】
    本题考查了概率的意义,解题的关键在于掌握计算公式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、,1
    【解析】
    先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.
    【详解】
    解:原式=[﹣]

    =,
    ∵不等式组的解为<a<5,其整数解是2,3,4,
    a不能等于0,2,4,
    ∴a=3,
    当a=3时,原式==1.
    【点睛】
    本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
    20、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.
    【解析】
    (1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;
    (2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;
    (3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.
    【详解】
    (1)如图①,延长CD至G,使得DG=BE,
    ∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,
    ∴△ABE≌△ADG,
    ∴AE=AG,∠BAE=∠DAG,
    ∵∠EAF=45°,∠BAD=90°,
    ∴∠BAE+∠DAF=45°,
    ∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,
    又∵AF=AF,
    ∴△AEF≌△AEG,
    ∴EF=GF=DG+DF=BE+DF,
    故答案为:BE+DF=EF;
    (2)存在.
    在等边三角形ABC中,AB=BC,∠ABC=60°,
    如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.
    由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,
    ∴△DBE是等边三角形,
    ∴DE=BD,
    ∴在△DCE中,DE<DC+CE=4+2=6,
    ∴当D、C、E三点共线时,DE存在最大值,且最大值为6,
    ∴BD的最大值为6;
    (3)存在.
    如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,
    ∵AB=BD,∠ABC=∠DBE,BC=BE,
    ∴△ABC≌△DBE,
    ∴DE=AC,
    ∵在等边三角形BCE中,EF⊥BC,
    ∴BF=BC=2,
    ∴EF=BF=×2=2,
    以BC为直径作⊙F,则点D在⊙F上,连接DF,
    ∴DF=BC=×4=2,
    ∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.

    【点睛】
    本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.
    21、CD的长度为17﹣17cm.
    【解析】
    在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案.
    【详解】
    解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,
    ∴∠BCE=30°,tan30°=,
    ∴BE=ECtan30°=51×=17(cm);
    ∴CF=AE=34+BE=(34+17)cm,
    在Rt△AFD中,∠FAD=45°,
    ∴∠FDA=45°,
    ∴DF=AF=EC=51cm,
    则CD=FC﹣FD=34+17﹣51=17﹣17,
    答:CD的长度为17﹣17cm.
    【点睛】
    本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.
    22、(1)1;(2)详见解析;(3)750;(4).
    【解析】
    (1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;
    (2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;
    (3)计算足球的百分比,根据样本估计总体,即可解答;
    (4)利用概率公式计算即可.
    【详解】
    (1)30÷15%=1(人).
    答:共抽取1名学生进行问卷调查;
    故答案为1.
    (2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.
    如图所示:

    (3)3000×0.25=750(人).
    答:全校学生喜欢足球运动的人数为750人.
    (4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)

    共有25种等可能的结果数,选同一项目的结果数为5,
    所以甲乙两人中有且选同一项目的概率P(A)=.
    【点睛】
    本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
    23、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去B景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40-8-14-4-6=8(人),
    补全条形统计图为:

    扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=280,
    所以估计“醉美旅游景点B“的学生人数为280人.
    【点睛】
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
    24、
    【解析】
    直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.
    【详解】
    原式

    【点睛】
    考核知识点:三角函数混合运算.正确计算是关键.
    25、 (1)证明见解析;(2).
    【解析】
    (1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;
    (2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.
    【详解】
    解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
    ∴Rt△ABD中,DE=AB=AE,
    Rt△ACD中,DF=AC=AF,
    又∵AB=AC,点E、F分别是AB、AC的中点,
    ∴AE=AF,
    ∴AE=AF=DE=DF,
    ∴四边形AEDF是菱形;
    (2)如图,

    ∵AB=AC=BC=10,
    ∴EF=5,AD=5,
    ∴菱形AEDF的面积S=EF•AD=×5×5=.
    【点睛】
    本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.
    26、详见解析
    【解析】
    先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.
    【详解】
    如图

    作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.
    【点睛】
    本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.
    27、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,-1)或(0,-1).
    【解析】
    (1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.
    (2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.
    (1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.
    【详解】
    解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,
    ∴y=2x﹣6,
    令y=0,解得:x=1,
    ∴B的坐标是(1,0).
    ∵A为顶点,
    ∴设抛物线的解析为y=a(x﹣1)2﹣4,
    把B(1,0)代入得:4a﹣4=0,
    解得a=1,
    ∴y=(x﹣1)2﹣4=x2﹣2x﹣1.
    (2)存在.
    ∵OB=OC=1,OP=OP,
    ∴当∠POB=∠POC时,△POB≌△POC,
    此时PO平分第二象限,即PO的解析式为y=﹣x.
    设P(m,﹣m),则﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),
    ∴P(,).
    (1)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,
    ∴,即=,∴DQ1=,
    ∴OQ1=,即Q1(0,-);
    ②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,
    ∴,即,
    ∴OQ2=,即Q2(0,);
    ③如图,当∠AQ1B=90°时,作AE⊥y轴于E,

    则△BOQ1∽△Q1EA,
    ∴,即
    ∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,
    即Q1(0,﹣1),Q4(0,﹣1).
    综上,Q点坐标为(0,-)或(0,)或(0,﹣1)或(0,﹣1).

    相关试卷

    2023年山东省泰安市新泰市中考数学三模试卷(含解析): 这是一份2023年山东省泰安市新泰市中考数学三模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省泰安市新泰市中考数学二模试卷(含解析): 这是一份2023年山东省泰安市新泰市中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省泰安市新泰市中考数学一模试卷(含解析): 这是一份2023年山东省泰安市新泰市中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map