


2022年山东省莒南县重点名校中考数学模试卷含解析
展开这是一份2022年山东省莒南县重点名校中考数学模试卷含解析,共16页。试卷主要包含了剪纸是我国传统的民间艺术等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )
A.(2,1) B.(2,0) C.(3,3) D.(3,1)
2.在平面直角坐标系中,位于第二象限的点是( )
A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
3.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是( )
A.38 B.39 C.40 D.42
4.计算的结果是( )
A. B. C.1 D.2
5.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8 B.9 C.10 D.11
6.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
A. B. C. D.
7.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
A. B. C. D.
8.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )
A.1种 B.2种 C.3种 D.6种
9.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
10.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.
12.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数(x<0)的图象上,则k= .
13.2017年7月27日上映的国产电影《战狼2》,风靡全国.剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影响力,累计票房56.8亿元.将56.8亿元用科学记数法表示为_____元.
14.如图,中,∠,,的面积为,为边上一动点(不与,重合),将和分别沿直线,翻折得到和,那么△的面积的最小值为____.
15.计算:=_____.
16.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).
17.9的算术平方根是 .
三、解答题(共7小题,满分69分)
18.(10分)关于x的一元二次方程ax2+bx+1=1.
(1)当b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
19.(5分)如图,在⊙O中,AB是直径,点C是圆上一点,点D是弧BC中点,过点D作⊙O切线DF,连接AC并延长交DF于点E.
(1)求证:AE⊥EF;
(2)若圆的半径为5,BD=6 求AE的长度.
20.(8分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?
21.(10分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.
22.(10分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
23.(12分)先化简,再计算: 其中.
24.(14分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
求证:AB=DC;试判断△OEF的形状,并说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.
【详解】
由题意得,△ODC∽△OBA,相似比是,
∴,
又OB=6,AB=3,
∴OD=2,CD=1,
∴点C的坐标为:(2,1),
故选A.
【点睛】
本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
2、D
【解析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
【详解】
根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
【点睛】
本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
3、B
【解析】
根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
【详解】
解:由于共有6个数据,
所以中位数为第3、4个数的平均数,即中位数为=39,
故选:B.
【点睛】
本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
4、A
【解析】
根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.
【详解】
.
故选A.
【点睛】
本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.
5、A
【解析】
分析:根据多边形的内角和公式及外角的特征计算.
详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.
点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
6、A
【解析】
试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.
考点:中心对称图形;轴对称图形.
7、D
【解析】
试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
试题解析:画树状图如下:
共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
故选D.
考点:列表法与树状法.
8、C
【解析】
试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C.
考点:正方体相对两个面上的文字.
9、B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
10、B
【解析】
根据轴对称图形的概念对各选项分析判断即可得出答案.
【详解】
A.不是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项正确;
C.不是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项错误.
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、10, 1, 1
【解析】
作CD⊥x轴于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由线段垂直平分线的性质得出BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,由三角形面积公式即可得出△OMN的面积.
【详解】
解:作CD⊥x轴于D,CE⊥OB于E,如图所示:
由题意得:OA=1,OB=8,
∵∠AOB=90°,
∴AB==10;
∵点C的坐标(﹣2,4),
∴OC==1,OE=4,
∴BE=OB﹣OE=4,
∴OE=BE,
∴BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,
∴△OMN的面积S=×3×4=1;
故答案为:10,1,1.
【点睛】
本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.
12、-4.
【解析】
过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.
【详解】
过点B作BD⊥x轴于点D,
∵△AOB是等边三角形,点A的坐标为(﹣4,0),
∴∠AOB=60°,OB=OA=AB=4,
∴OD= OB=2,BD=OB•sin60°=4×=2,
∴B(﹣2,2 ),
∴k=﹣2×2 =﹣4.
【点睛】
本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.
13、5.68×109
【解析】
试题解析:科学记数法的表示形式为的形式,其中 为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
56.8亿
故答案为
14、4.
【解析】
过E作EG⊥AF,交FA的延长线于G,由折叠可得∠EAG=30°,而当AD⊥BC时,AD最短,依据BC=7,△ABC的面积为14,即可得到当AD⊥BC时,AD=4=AE=AF,进而得到△AEF的面积最小值为:AF×EG=×4×2=4.
【详解】
解:如图,过E作EG⊥AF,交FA的延长线于G,
由折叠可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
当AD⊥BC时,AD最短,
∵BC=7,△ABC的面积为14,
∴当AD⊥BC时,
,
即:,
∴.
∴△AEF的面积最小值为:
AF×EG=×4×2=4,
故答案为:4.
【点睛】
本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等.
15、-
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=2.
故答案为-.
【点睛】
本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
16、10海里.
【解析】
本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.
【详解】
由已知可得:AC=60×0.5=30海里,
又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,
∴∠BAC=90°,
又∵乙船正好到达甲船正西方向的B点,
∴∠C=30°,
∴AB=AC•tan30°=30×=10海里.
答:乙船的路程为10海里.
故答案为10海里.
【点睛】
本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.
17、1.
【解析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为1.
故答案为1.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
三、解答题(共7小题,满分69分)
18、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.
【解析】
分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.
(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.
详解:(2)解:由题意:.
∵,
∴原方程有两个不相等的实数根.
(2)答案不唯一,满足()即可,例如:
解:令,,则原方程为,
解得:.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
19、(1)详见解析;(2)AE=6.1.
【解析】
(1)连接OD,利用切线的性质和三角形的内角和证明OD∥EA,即可证得结论;
(2)利用相似三角形的判定和性质解答即可.
【详解】
(1)连接OD,
∵EF是⊙O的切线,
∴OD⊥EF,
∵OD=OA,
∴∠ODA=∠OAD,
∵点D是弧BC中点,
∴∠EAD=∠OAD,
∴∠EAD=∠ODA,
∴OD∥EA,
∴AE⊥EF;
(2)∵AB是直径,
∴∠ADB=90°,
∵圆的半径为5,BD=6
∴AB=10,BD=6,
在Rt△ADB中,,
∵∠EAD=∠DAB,∠AED=∠ADB=90°,
∴△AED∽△ADB,
∴,
即,
解得:AE=6.1.
【点睛】
本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.
20、甲、乙两公司人均捐款分别为80元、100元.
【解析】
试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.
试题解析:
设甲公司人均捐款x元
解得:
经检验,为原方程的根, 80+20=100
答:甲、乙两公司人均各捐款为80元、100元.
21、
【解析】
试题分析:按照解一元一次不等式的步骤解不等式即可.
试题解析:,
,
.
解集在数轴上表示如下
点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.
22、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
【解析】
试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
答:一次至少买1只,才能以最低价购买;
(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
综上所述:;
(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
即出现了卖46只赚的钱比卖1只赚的钱多的现象.
当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
23、;
【解析】
根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可.
【详解】
解:
=
=
=
=
当时,原式=.
【点睛】
此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.
24、(1)证明略
(2)等腰三角形,理由略
【解析】
证明:(1)∵BE=CF,
∴BE+EF=CF+EF, 即BF=CE.
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS),
∴AB=DC.
(2)△OEF为等腰三角形
理由如下:∵△ABF≌△DCE,
∴∠AFB=∠DEC.
∴OE=OF.
∴△OEF为等腰三角形.
相关试卷
这是一份2024年山东省临沂市莒南县中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省临沂市莒南县中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省莒南县重点名校2022年十校联考最后数学试题含解析,共18页。