![2022年山东省临沂费县联考中考联考数学试卷含解析01](http://m.enxinlong.com/img-preview/2/3/13444478/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年山东省临沂费县联考中考联考数学试卷含解析02](http://m.enxinlong.com/img-preview/2/3/13444478/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年山东省临沂费县联考中考联考数学试卷含解析03](http://m.enxinlong.com/img-preview/2/3/13444478/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年山东省临沂费县联考中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是( )
A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm2
2.比较4,,的大小,正确的是( )
A.4<< B.4<<
C.<4< D.<<4
3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )
A.6折 B.7折
C.8折 D.9折
4.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )
A.3.5 B.3 C.4 D.4.5
5.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A.30° B.60° C.30°或150° D.60°或120°
6.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
A. B. C. D.
7.下列关于x的方程一定有实数解的是( )
A. B.
C. D.
8.点M(1,2)关于y轴对称点的坐标为( )
A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
9.在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A. B.
C. D.
10.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( )
A.平均数 B.众数 C.中位数 D.方差
11.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是( )
A.m+n<0 B.m+n>0 C.m<n D.m>n
12.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).
14.不等式组的解集是 _____________.
15.|-3|=_________;
16.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为_____.
17.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.
18.若正多边形的一个外角是45°,则该正多边形的边数是_________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
20.(6分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)
21.(6分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积.
22.(8分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,AD=5,求OC的值.
23.(8分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
(1)第一批花每束的进价是多少元.
(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
24.(10分)关于x的一元二次方程ax2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
25.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?
26.(12分)如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C.
(1)求二次函数的表达式
(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.
27.(12分)楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.
考点:圆锥的计算;几何体的表面积.
2、C
【解析】
根据4=<且4=>进行比较
【详解】
解:易得:4=<且4=>,
所以<4<
故选C.
【点睛】
本题主要考查开平方开立方运算。
3、B
【解析】
设可打x折,则有1200×-800≥800×5%,
解得x≥1.
即最多打1折.
故选B.
【点睛】
本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.
4、B
【解析】
解:∵∠ACB=90°,∠ABC=60°,
∴∠A=10°,
∵BD平分∠ABC,
∴∠ABD=∠ABC=10°,
∴∠A=∠ABD,
∴BD=AD=6,
∵在Rt△BCD中,P点是BD的中点,
∴CP=BD=1.
故选B.
5、D
【解析】
【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.
【详解】由图可知,OA=10,OD=1,
在Rt△OAD中,
∵OA=10,OD=1,AD==,
∴tan∠1=,∴∠1=60°,
同理可得∠2=60°,
∴∠AOB=∠1+∠2=60°+60°=120°,
∴∠C=60°,
∴∠E=180°-60°=120°,
即弦AB所对的圆周角的度数是60°或120°,
故选D.
【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.
6、D
【解析】
延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
【详解】
解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC=R,
故选D.
【点睛】
此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
7、A
【解析】
根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
【详解】
A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
B.ax=3中当a=0时,方程无解,不符合题意;
C.由可解得不等式组无解,不符合题意;
D.有增根x=1,此方程无解,不符合题意;
故选A.
【点睛】
本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
8、A
【解析】
关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.
【详解】
点M(1,2)关于y轴对称点的坐标为(-1,2)
【点睛】
本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.
9、B
【解析】
根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.
【详解】
由题意,设金色纸边的宽为,
得出方程:(80+2x)(50+2x)=5400,
整理后得:
故选:B.
【点睛】
本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.
10、D
【解析】
A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;
添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;
∴平均数不发生变化.
B. ∵原众数是:3;
添加一个数据3后的众数是:3;
∴众数不发生变化;
C. ∵原中位数是:3;
添加一个数据3后的中位数是:3;
∴中位数不发生变化;
D. ∵原方差是:;
添加一个数据3后的方差是:;
∴方差发生了变化.
故选D.
点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.
11、D
【解析】
根据反比例函数的性质,可得答案.
【详解】
∵y=−的k=-2<1,图象位于二四象限,a<1,
∴P(a,m)在第二象限,
∴m>1;
∵b>1,
∴Q(b,n)在第四象限,
∴n<1.
∴n<1<m,
即m>n,
故D正确;
故选D.
【点睛】
本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.
12、B
【解析】
根据常见几何体的展开图即可得.
【详解】
由展开图可知第一个图形是②正方体的展开图,
第2个图形是①圆柱体的展开图,
第3个图形是③三棱柱的展开图,
第4个图形是④四棱锥的展开图,
故选B
【点睛】
本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
【详解】
(cm2).
故答案为.
考点:1、扇形的面积公式;2、两圆相外切的性质.
14、x<-1
【解析】
解不等式①得:x<5,
解不等式②得:x<-1
所以不等式组的解集是x<-1.
故答案是:x<-1.
15、1
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-1|=1.
故答案为1.
16、1或2
【解析】
分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.
【详解】
点在圆内,圆的直径为1+3=4,圆的半径为2;
点在圆外,圆的直径为3−1=2,圆的半径为1,
故答案为1或2.
【点睛】
本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.
17、
【解析】
根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B地的距离.
【详解】
设甲的速度为akm/h,乙的速度为bkm/h,
,
解得,,
设第二次甲追上乙的时间为m小时,
100m﹣25(m﹣1)=600,
解得,m=,
∴当甲第二次与乙相遇时,乙离B地的距离为:25×(-1)=千米,
故答案为.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
18、1;
【解析】
根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.
【详解】
∵多边形外角和是360度,正多边形的一个外角是45°,
∴360°÷45°=1
即该正多边形的边数是1.
【点睛】
本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=-2x+31,(2)20≤x≤1
【解析】
试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
试题解析:
(1)设y与x的函数关系式为y=kx+b,根据题意,得:
解得:
∴y与x的函数解析式为y=-2x+31,
(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
∴自变量x的取值范围是20≤x≤1.
20、此车没有超过了该路段16m/s的限制速度.
【解析】
分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.
详解:由题意得:∠DCA=60°,∠DCB=45°,
在Rt△CDB中,tan∠DCB=,
解得:DB=200,
在Rt△CDA中,tan∠DCA=,
解得:DA=200,
∴AB=DA﹣DB=200﹣200≈146米,
轿车速度,
答:此车没有超过了该路段16m/s的限制速度.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.
21、解:(1)CD与⊙O相切.理由如下:
∵AC为∠DAB的平分线,∴∠DAC=∠BAC.
∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.
∴OC∥AD.
∵AD⊥CD,∴OC⊥CD.
∵OC是⊙O的半径,∴CD与⊙O相切.
(2)如图,连接EB,由AB为直径,得到∠AEB=90°,
∴EB∥CD,F为EB的中点.∴OF为△ABE的中位线.
∴OF=AE=,即CF=DE=.
在Rt△OBF中,根据勾股定理得:EF=FB=DC=.
∵E是的中点,∴=,∴AE=EC.∴S弓形AE=S弓形EC.
∴S阴影=S△DEC=××=.
【解析】
(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于CD,即可得证.
(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可.
考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中位线定理,勾股定理,扇形面积的计算,转换思想的应用.
22、(1)证明见解析;(2).
【解析】
试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;
(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.
试题解析:(1)连结DO.
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD.
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB. 3分
又∵CO=CO, OD=OB
∴△COD≌△COB(SAS) 4分
∴∠CDO=∠CBO=90°.
又∵点D在⊙O上,
∴CD是⊙O的切线.
(2)∵△COD≌△COB.
∴CD=CB.
∵DE=2BC,
∴ED=2CD.
∵AD∥OC,
∴△EDA∽△ECO.
∴,
∴.
考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.
23、(1)2元;(2)第二批花的售价至少为元;
【解析】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,
根据题意得:,
解得:,
经检验:是原方程的解,且符合题意.
答:第一批花每束的进价是2元.
(2)由可知第二批菊花的进价为元.
设第二批菊花的售价为m元,
根据题意得:,
解得:.
答:第二批花的售价至少为元.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
24、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.
【解析】
分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.
(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.
详解:(2)解:由题意:.
∵,
∴原方程有两个不相等的实数根.
(2)答案不唯一,满足()即可,例如:
解:令,,则原方程为,
解得:.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
25、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.
【解析】
此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可
【详解】
设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷
根据题意可得
解得
答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.
【点睛】
此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系
26、(1);(2).
【解析】
(1)将和两点代入函数解析式即可;
(2)结合二次函数图象即可.
【详解】
解:(1)∵二次函数与轴交于和两点,
解得
∴二次函数的表达式为.
(2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是.
【点睛】
本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质.
27、(39+9)米.
【解析】
过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.
【详解】
解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,
在Rt△CEF中,∵=tan∠ECF,
∴∠ECF=30°,
∴EF=CE=10米,CF=10米,
∴BH=EF=10米, HE=BF=BC+CF=(25+10)米,
在Rt△AHE中,∵∠HAE=45°,
∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.
答:楼房AB的高为(35+10)米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是本题的解题关键.
2023-2024学年山东省临沂市费县九年级(上)期中数学试卷(含解析): 这是一份2023-2024学年山东省临沂市费县九年级(上)期中数学试卷(含解析),共18页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
2023年山东省临沂市费县中考数学二模试卷(含解析): 这是一份2023年山东省临沂市费县中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省临沂市费县中考数学一模试卷(含解析): 这是一份2023年山东省临沂市费县中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,羊二,直金十九两;牛二,填空题,解答题等内容,欢迎下载使用。