终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年中考数学真题汇编:圆(含解析)

    立即下载
    加入资料篮
    2022年中考数学真题汇编:圆(含解析)第1页
    2022年中考数学真题汇编:圆(含解析)第2页
    2022年中考数学真题汇编:圆(含解析)第3页
    还剩51页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学真题汇编:圆(含解析)

    展开

    这是一份2022年中考数学真题汇编:圆(含解析),共54页。
    2022年中考数学真题汇编:圆

    1.(2022贵阳)如图,已知,点为边上一点,,点为线段的中点,以点为圆心,线段长为半径作弧,交于点,连接,则的长是( )

    A. 5 B. C. D.
    2.(2022铜仁)如图,是的两条半径,点C在上,若,则的度数为( )

    A. B. C. D.
    3.(2022黔东南)如图,已知正六边形内接于半径为的,随机地往内投一粒米,落在正六边形内的概率为( )

    A. B. C. D. 以上答案都不对
    4.(2022铜仁)如图,在边长为6的正方形中,以为直径画半圆,则阴影部分的面积是( )

    A. 9 B. 6 C. 3 D. 12
    5.(2022黔东南)如图,、分别与相切于点、,连接并延长与交于点、,若,,则的值为( )

    A. B. C. D.
    6.(2022河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )

    A. cm B. cm C. cm D. cm
    7.(2022哈尔滨)如图,是的直径,点P在的延长线上,与相切于点A,连接,若,则的度数为( )

    A. B. C. D.
    8.(2022遵义)如图,在正方形中,和交于点,过点直线交于点(不与,重合),交于点.以点为圆心,为半径的圆交直线于点,.若,则图中阴影部分的面积为( )

    A. B. C. D.
    9.(2022龙东地区)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①;②;③;④若,则;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是( )

    A. ①②④⑤ B. ①②③⑤ C. ①②③④ D. ①③④⑤
    10.(2022哈尔滨)一个扇形的面积为,半径为,则此扇形的圆心角是___________度.
    11.(2022龙东地区)如图,在中,AB是的弦,的半径为3cm,C为上一点,,则AB的长为________cm.

    12.(2022恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)________.

    13.(2022遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28纬线的长度.
    小组成员查阅相关资料,得到如下信息:
    信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;
    信息二:如图2,赤道半径约为6400千米,弦,以为直径的圆的周长就是北纬28°纬线的长度;(参考数据:,,,)
    根据以上信息,北纬28°纬线的长度约为__________千米.

    14.(2022黔东南)如图,在中,,半径为3cm的是的内切圆,连接、,则图中阴影部分的面积是__________cm2.(结果用含的式子表示)

    15.(2022绥化)已知:.

    (1)尺规作图:用直尺和圆规作出内切圆的圆心O;(只保留作图痕迹,不写作法和证明)
    (2)如果的周长为14,内切圆的半径为1.3,求的面积.


    16.(2022铜仁)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.


    (1)求证:AB=CB;
    (2)若AB=18,sinA=,求EF长.


    17.(2022鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.

    (1)试判断PC与⊙O的位置关系,并说明理由;
    (2)若PC=4,tanA=,求△OCD的面积.


    18.(2022大庆)如图,已知是外接圆的直径,.点D为外的一点,.点E为中点,弦过点E..连接.

    (1)求证:是的切线;
    (2)求证:;
    (3)当时,求弦的长.


    19.(2022齐齐哈尔)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O交于点E,过点C作,且CF=CD,连接BF.


    (1)求证:BF是⊙O的切线;
    (2)若∠BAC=45°,AD=4,求图中阴影部分的面积.


    20.(2022河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.

    (1)求∠C的大小及AB的长;
    (2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:取4,取4.1)


    21.(2022黔东南)(1)请在图中作出的外接圆(尺规作图,保留作图痕迹,不写作法);

    (2)如图,是的外接圆,是的直径,点是的中点,过点的切线与的延长线交于点.

    ①求证:;
    ②若,,求的半径.


    22.(2022哈尔滨)已知是的直径,点A,点B是上的两个点,连接,点D,点E分别是半径的中点,连接,且.

    (1)如图1,求证:;
    (2)如图2,延长交于点F,若,求证:;
    (3)如图3,在(2)的条件下,点G是上一点,连接,若,,求的长.


    23.(2022绥化)如图所示,在的内接中,,,作于点P,交于另一点B,C是上的一个动点(不与A,M重合),射线交线段的延长线于点D,分别连接和,交于点E.

    (1)求证:.
    (2)若,,求的长.
    (3)在点C运动过程中,当时,求的值.


    24.(2022鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.

    (1)请直接写出点B的坐标;
    (2)若动点P满足∠POB=45°,求此时点P的坐标;
    (3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A',当PA'⊥OB时,求此时点P的坐标;
    (4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.


    25.(2022恩施州)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.

    (1)求证:∠ADE=∠PAE.
    (2)若∠ADE=30°,求证:AE=PE.
    (3)若PE=4,CD=6,求CE的长.


    26.(2022河北)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.

    (1)求证:△PQM≌△CHD;
    (2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
    ①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
    ②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;
    ③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).


    27.(2022遵义)综合与实践
    “善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.
    提出问题:
    如图1,在线段同侧有两点,,连接,,,,如果,那么,,,四点在同一个圆上.

    探究展示:
    如图2,作经过点,,的,在劣弧上取一点(不与,重合),连接,则(依据1)



    点,,,四点在同一个圆上(对角互补的四边形四个顶点共圆)
    点,在点,,所确定的上(依据2)
    点,,,四点在同一个圆上
    (1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?
    依据1:__________;依据2:__________.
    (2)如图3,在四边形中,,,则的度数为__________.

    (3)拓展探究:如图4,已知是等腰三角形,,点在上(不与的中点重合),连接.作点关于的对称点,连接并延长交的延长线于,连接,.

    ①求证:,,,四点共圆;
    ②若,的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.

    2022年中考数学真题汇编:圆参考答案
    1.(2022贵阳)如图,已知,点为边上一点,,点为线段的中点,以点为圆心,线段长为半径作弧,交于点,连接,则的长是( )

    A. 5 B. C. D.
    【答案】连接OE,如图所示:

    ∵,点为线段的中点,
    ∴,
    ∵以点为圆心,线段长为半径作弧,交于点,
    ∴,
    ∴,
    ∴为等边三角形,
    即,
    故选:A.
    2.(2022铜仁)如图,是的两条半径,点C在上,若,则的度数为( )

    A. B. C. D.
    【答案】∵是的两条半径,点C在上,
    ∴∠C= =40°
    故选:B
    3.(2022黔东南)如图,已知正六边形内接于半径为的,随机地往内投一粒米,落在正六边形内的概率为( )

    A. B. C. D. 以上答案都不对
    【答案】解:如图:连接OB,过点O作OH⊥AB于点H,

    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=60°,
    ∵OA=OB=r,
    ∴△OAB是等边三角形,
    ∴AB=OA=OB=r,∠OAB=60°,
    在中,,
    ∴,
    ∴正六边形的面积,
    ∵⊙O的面积=πr2,
    ∴米粒落在正六边形内的概率为:,
    故选:A.
    4.(2022铜仁)如图,在边长为6的正方形中,以为直径画半圆,则阴影部分的面积是( )

    A. 9 B. 6 C. 3 D. 12
    【答案】解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,
    ∵四边形ABCD是正方形,
    ∴∠OCE=45°,
    ∵OE=OC,
    ∴∠OEC=∠OCE=45°,
    ∴∠EOC=90°,
    ∴OE垂直平分BC,
    ∴BE=CE,
    ∴弓形BE的面积=弓形CE的面积,
    ∴,
    故选A.

    5.(2022黔东南)如图,、分别与相切于点、,连接并延长与交于点、,若,,则的值为( )

    A. B. C. D.
    【答案】解:连结OA
    ∵、分别与相切于点A、,
    ∴PA=PB,OP平分∠APB,OP⊥AP,
    ∴∠APD=∠BPD,
    在△APD和△BPD中,

    ∴△APD≌△BPD(SAS)
    ∴∠ADP=∠BDP,
    ∵OA=OD=6,
    ∴∠OAD=∠ADP=∠BDP,
    ∴∠AOP=∠ADP+∠OAD=∠ADP+∠BDP=∠ADB,
    在Rt△AOP中,OP=,
    ∴sin∠ADB=.
    故选A.

    6.(2022河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )

    A. cm B. cm C. cm D. cm
    【答案】解:如图,


    PA,PB分别与所在圆相切于点A,B.

    ∠P=40°,

    该圆半径是9cm,
    cm,
    故选:A.
    7.(2022哈尔滨)如图,是的直径,点P在的延长线上,与相切于点A,连接,若,则的度数为( )

    A. B. C. D.
    【答案】解:PA与⊙O相切于点A,AD是⊙O的直径,








    故选:A.
    8.(2022遵义)如图,在正方形中,和交于点,过点直线交于点(不与,重合),交于点.以点为圆心,为半径的圆交直线于点,.若,则图中阴影部分的面积为( )

    A. B. C. D.
    【答案】解:在正方形中,,
    的半径为:
    过点,根据中心对称可得四边形的面积等于正方形面积的一半,

    阴影部分面积为:



    故选:B.
    9.(2022龙东地区)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①;②;③;④若,则;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是( )

    A. ①②④⑤ B. ①②③⑤ C. ①②③④ D. ①③④⑤
    【答案】①∵四边形ABCD是正方形,O是对角线AC、BD的交点,
    ∴OC=OD,OC⊥OD,∠ODF=∠OCE=45°

    ∴∠DOF+∠FOC=∠FOC+∠EOC=90°
    ∴∠DOF=∠EOC
    在△DOF与△COE中


    ∴EC=FD
    ∵在△EAC与△FBD中

    ∴∠EAC=∠FBD
    又∵∠BQP=∠AQO
    ∴∠BPQ=∠AOQ=90°
    ∴AE⊥BF
    所以①正确;
    ②∵∠AOB=∠APB=90°
    ∴点P、O在以AB为直径的圆上
    ∴AO是该圆的弦

    所以②正确;
    ③∵












    所以③正确;
    ④作EG⊥AC于点G,则EGBO,

    设正方形边长为5a,则BC=5a,OB=OC=,
    若,则,



    ∵EG⊥AC,∠ACB=45°,
    ∴∠GEC=45°
    ∴CG=EG=

    所以④错误;
    ⑤∵,S四边形OECF=S△COE+S△COF
    ∴S四边形OECF= S△DOF+S△COF= S△COD
    ∵S△COD=
    ∴S四边形OECF=
    所以⑤正确;
    综上,①②③⑤正确,④错误,
    故选 B

    10.(2022哈尔滨)一个扇形的面积为,半径为,则此扇形的圆心角是___________度.
    【答案】解:设扇形的圆心角是,根据扇形的面积公式得:
    解得n=70.
    故答案:.
    11.(2022龙东地区)如图,在中,AB是的弦,的半径为3cm,C为上一点,,则AB的长为________cm.

    【答案】解:连接OA、OB,过点O作OD⊥AB于点D,



    ,,








    故答案为:.
    12.(2022恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)________.

    【答案】解:设切点分别为D、E、F,连接OD、OE、OF,

    ∵⊙O为Rt△ABC的内切圆,
    ∴AE=AF、BD=BF、CD=CE,OD⊥BC,OE⊥AC,
    ∵∠C=90°,
    ∴四边形CDOE为正方形,
    ∴∠EOF+∠FOD=360°-90°=270°,
    设⊙O的半径为x,则CD=CE=x,AE=AF=4-x,BD=BF=3-x,
    ∴4-x+3-x=5,
    解得x=1,
    ∴S阴影=S△ABC-( S扇形EOF+ S扇形DOF)- S正方形CDOE
    =×3×4-×1×1
    =-.
    故答案为:-.
    13.(2022遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28纬线的长度.
    小组成员查阅相关资料,得到如下信息:
    信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;
    信息二:如图2,赤道半径约为6400千米,弦,以为直径的圆的周长就是北纬28°纬线的长度;(参考数据:,,,)
    根据以上信息,北纬28°纬线的长度约为__________千米.

    【答案】解:如图,过点O作,垂足为D,


    根据题意,
    ∵,
    ∴,
    ∵在中, ,
    ∴,
    ∵,
    ∴由垂径定理可知:,
    ∴以为直径的圆的周长为,
    故答案为:33792.
    14.(2022黔东南)如图,在中,,半径为3cm的是的内切圆,连接、,则图中阴影部分的面积是__________cm2.(结果用含的式子表示)

    【答案】∵内切圆圆心是三条角平分线的交点
    ∴;
    设,
    在中:
    在中:
    由①②得:
    扇形面积:(cm2)
    故答案为:
    15.(2022绥化)已知:.

    (1)尺规作图:用直尺和圆规作出内切圆的圆心O;(只保留作图痕迹,不写作法和证明)
    (2)如果的周长为14,内切圆的半径为1.3,求的面积.
    【答案】
    (1)解:如下图所示,O为所求作点,

    (2)解:如图所示,连接OA,OB,OC,作OD⊥AB,OE⊥BC,OF⊥AC,

    ∵内切圆的半径为1.3,
    ∴OD=OF=OE=1.3,
    ∵三角形ABC的周长为14,
    ∴AB+BC+AC=14,


    故三角形ABC的面积为9.1.
    16.(2022铜仁)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.


    (1)求证:AB=CB;
    (2)若AB=18,sinA=,求EF长.
    【答案】
    (1)证明:连接OD,如图1,


    ∵DE是⊙O的切线,
    ∴OD⊥DE.
    ∵BC⊥DE,
    ∴OD∥BC.
    ∴∠ODA=∠C.
    ∵OA=OD,
    ∴∠ODA=∠A.
    ∴∠A=∠C.
    ∴AB=BC;
    (2)解:连接BD,则∠ADB=90°,如图2,


    在Rt△ABD中,
    ∵sinA==,AB=18,
    ∴BD=6.
    ∵OB=OD,
    ∴∠ODB=∠OBD.
    ∵∠OBD+∠A=∠FDB+∠ODB=90°,
    ∴∠A=∠FDB.
    ∴sin∠A=sin∠FDB.
    在Rt△BDF中,
    ∵sin∠BDF==,
    ∴BF=2.
    由(1)知:OD∥BF,
    ∴△EBF∽△EOD.
    ∴=.即:=.
    解得:BE=.
    ∴EF=.
    17.(2022鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.

    (1)试判断PC与⊙O的位置关系,并说明理由;
    (2)若PC=4,tanA=,求△OCD的面积.
    【答案】
    (1)解:PC与⊙O相切,理由如下:
    ∵AB是圆O的直径,
    ∴∠ACB=90°,
    ∴∠OCB+∠OCA=90°,
    ∵OA=OC,
    ∴∠OCA=∠OAC,
    ∵∠PCB=∠OAC,
    ∴∠PCB=∠OCA,
    ∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,
    ∴PC与⊙O相切;
    (2)解:∵∠ACB=90°,,
    ∴,
    ∵∠PCB=∠OAC,∠P=∠P,
    ∴△PBC∽△PCA,
    ∴,
    ∴,
    ∴AB=6,
    ∴,
    ∴,
    ∵,
    ∴△PBC∽△POD,
    ∴,即,
    ∴,
    ∴CD=6,
    ∴.
    18.(2022大庆)如图,已知是外接圆的直径,.点D为外的一点,.点E为中点,弦过点E..连接.

    (1)求证:是的切线;
    (2)求证:;
    (3)当时,求弦的长.
    【答案】
    (1)解:∵BC是△ABC外接圆⊙O的直径,
    ∴∠BAC=90°,
    ∴∠B+∠ACB=90°,
    ∵∠ACD=∠B,
    ∴∠ACD+∠ACB=90°,
    ∴∠BCD=90°,
    ∵ OC 是 OO 的半径,
    ∴CD 是 OO 的切线;
    (2)如下图,连接AF、CG,

    ∴∠AFE=∠ECG,
    ∵∠AEF=∠CEG,
    ∴△FEA∽△CEG,
    ∴,
    ∵点E为AC中点,
    ∴AE=CE,
    ∵EF=2EG,
    ∴,
    ∴CE2=2EG2,
    ∵∠BAC=90°,点E为AC中点,
    ∴EOAB,
    ∴∠OEC=90°,
    ∴OC2-OE2=EC2,
    ∴OC2-OE2=2EG2,
    ∴(OC+OE)(OC−OE)=EG⋅EF;
    (3)作ON⊥FG,延长FG交线段于点W,


    ∵BC=16,
    ∴OC=8,
    ∵FGBC,
    ∴四边形ONWC为矩形,
    ∵EF=2EG,
    ∴FG=3EG,
    ∴NG=1.5EG,NE=0.5EG,EW=8-1.5EG+EG=8-0.5EG,
    由(2)可知:OC2-OE2=2EG2,
    ∴CE2=2EG2,
    ∴OE2=64-2EG2,ON2=64-2EG2-EG2,EW2=(8-0.5EG)2,
    ∴(8-0.5EG)2+64-2EG2-EG2=2EG2,
    解得EG=,
    ∴FG=3EG=.
    19.(2022齐齐哈尔)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O交于点E,过点C作,且CF=CD,连接BF.


    (1)求证:BF是⊙O的切线;
    (2)若∠BAC=45°,AD=4,求图中阴影部分的面积.
    【答案】
    (1)连接BD


    ∵AB是的直径





    ∴,

    ∵,


    又∵

    ∴BF是的切线
    (2)连接OE,与BD相交于M点


    ∵,,
    ∴为等腰直角三角形
    ∴,,



    ∵,



    ∴为等腰直角三角形


    20.(2022河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.

    (1)求∠C的大小及AB的长;
    (2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:取4,取4.1)
    【答案】
    (1)解:∵水面截线



    在中,,,

    解得.
    (2)过点作,交MN于D点,交半圆于H点,连接OM,过点M作MG⊥OB于G,如图所示:

    水面截线,,
    ,,
    为最大水深,


    ,且,

    ,即,即,
    在中,,,
    ,即,
    解得,

    最大水深约为米.
    21.(2022黔东南)(1)请在图中作出的外接圆(尺规作图,保留作图痕迹,不写作法);

    (2)如图,是的外接圆,是的直径,点是的中点,过点的切线与的延长线交于点.

    ①求证:;
    ②若,,求的半径.
    【答案】(1)如下图所示

    ∵的外接圆的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,
    ∴做AB、AC垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到的外接圆;
    (2)
    ①如下图所示,连接OC、OB

    ∵BD是的切线

    ∵是对应的圆周角,是对应的圆心角

    ∵点是的中点





    ②如下图所示,连接CE

    ∵与是对应的圆周角

    ∵是的直径





    ∴的半径为.
    22.(2022哈尔滨)已知是的直径,点A,点B是上的两个点,连接,点D,点E分别是半径的中点,连接,且.

    (1)如图1,求证:;
    (2)如图2,延长交于点F,若,求证:;
    (3)如图3,在(2)的条件下,点G是上一点,连接,若,,求的长.
    【答案】
    (1)如图1.∵点D,点E分别是半径的中点

    ∴,
    ∵,

    ∵,


    ∴,
    ∴;
    (2)如图2.∵,


    由(1)得,

    ∴,


    ∴,

    (3)如图3.∵,



    连接.∵
    ∴,
    ∴,

    设,

    在上取点M,使得,连接
    ∵,

    ∴,
    ∴为等边三角形

    ∵,

    ∴,

    ∴,
    过点H作于点N

    ∴,

    ∵,,

    ∵,
    ∴,

    ∴,
    在中,,

    ∴,
    ∴.
    23.(2022绥化)如图所示,在的内接中,,,作于点P,交于另一点B,C是上的一个动点(不与A,M重合),射线交线段的延长线于点D,分别连接和,交于点E.

    (1)求证:.
    (2)若,,求的长.
    (3)在点C运动过程中,当时,求的值.
    【答案】
    (1)解:∵AB⊥MN,
    ∴∠APM=90°,
    ∴∠D+∠DMP=90°,
    又∵∠DMP+∠NAC=180°,∠MAN=90°,
    ∴∠DMP+∠CAM=90°,
    ∴∠CAM=∠D,
    ∵∠CMA=∠ABC,
    ∴.
    (2)连接OC,
    ∵,
    ∴MN是直径,
    ∵,
    ∴OM=ON=OC=5,
    ∵,且,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴OC⊥MN,
    ∴∠COE=90°,
    ∵AB⊥MN,
    ∴∠BPE=90°,
    ∴∠BPE=∠COE,
    又∵∠BEP=∠CEO,

    ∴,

    由,
    ∴,
    ∴,

    ∴.

    (3)过C点作CG⊥MN,垂足为G,连接CN,
    ∵MN是直径,
    ∴∠MCN=90°,
    ∴∠CNM+∠DMP=90°,
    ∵∠D+∠DMP=90°,
    ∴∠D=∠CNM,
    ∵,
    ∴,






    ∵,且,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵∠CGE=∠BPE=90°,∠CEG =∠BEP,
    ∴,
    ∴,

    ∴,
    ∴,,
    ∴,
    ∴值为.

    24.(2022鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.

    (1)请直接写出点B的坐标;
    (2)若动点P满足∠POB=45°,求此时点P的坐标;
    (3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A',当PA'⊥OB时,求此时点P的坐标;
    (4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.
    【答案】
    (1)解:在Rt△OAB中,,
    ∴点B的坐标为(8,6);
    (2)解:连接OP,过点P作PQ⊥OB于点Q,如图,


    ∵∠POB=45°,
    ∴∠OPQ=45°,
    ∴∠POB=∠OPQ,
    ∴PQ=OQ,
    设PQ=OQ=x,则BQ=10-x,
    在Rt△OAB中,,
    在Rt△BPQ中,,
    解得,
    ∴,
    在Rt△POQ中,,
    在Rt△AOP中,,
    ∴点P的坐标为(,6);
    (3)解:令PA'交OB于点D,如图,

    ∵点E为线段OB的中点,
    ∴,,
    ∵,
    设,则,
    ∴,
    ∴,
    由折叠的性质,可得,,
    ∴,
    在Rt△中,,即,
    解得,
    ∵,即,
    ∴,
    ∴,
    ∴,
    ∴点P的坐标为(,6);
    (4)解:以点F为圆心,OF的长为半径画圆,与AB的交点即为点P,再将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,此时OG最小,如图,


    由题可知,,
    在中,,
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴,
    ∴OG的最小值为4,
    ∴线段FP扫过的面积=.
    25.(2022恩施州)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.

    (1)求证:∠ADE=∠PAE.
    (2)若∠ADE=30°,求证:AE=PE.
    (3)若PE=4,CD=6,求CE的长.
    【答案】
    (1)证明:连接OA,

    ∵PA为⊙O的切线,
    ∴OA⊥PA,即∠OAP=90°,
    ∴∠OAE+∠PAE=90°,
    ∵DE为⊙O的直径,
    ∴∠DAE=90°,即∠OAE+∠DAO=90°,
    ∴∠DAO=∠PAE,
    ∵OA=OD,
    ∴∠DAO=∠ADE,
    ∴∠ADE=∠PAE;
    (2)证明:∵∠ADE=30°,
    由(1)得∠ADE=∠PAE =30°,∠AED=90°-∠ADE=60°,
    ∴∠APE=∠AED-∠PAE =30°,
    ∴∠APE=∠PAE =30°,
    ∴AE=PE;
    (3)解:∵PA、PB为⊙O的切线,切点分别为A、B,直线PO交AB于点C.
    ∴AB⊥PD,
    ∵∠DAE=90°,∠OAP=90°,
    ∴∠DAC+∠CAE=90°,∠OAC+∠PAC=90°,
    ∵∠DAC+∠D=90°,∠OAC+∠AOC=90°,
    ∴∠CAE=∠D,∠PAC=∠AOC,
    ∴Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,
    ∴AC2=DC×CE,AC2=OC×PC,
    即DC×CE=OC×PC,
    设CE=x,则DE=6+x,OE=3+,OC=3+-x=3-,PC=4+x,
    ∴6x=(3-)( 4+x),
    整理得:x2+10x-24=0,
    解得:x=2(负值已舍).
    ∴CE的长为2.
    26.(2022河北)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.

    (1)求证:△PQM≌△CHD;
    (2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
    ①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
    ②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;
    ③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).
    【答案】
    (1)∵,

    则在四边形中

    故四边形为矩形

    在中,
    ∴,

    ∴;
    (2)①过点Q作于S

    由(1)得:
    在中,

    平移扫过面积:
    旋转扫过面积:
    故边PQ扫过的面积:
    ②运动分两个阶段:平移和旋转
    平移阶段:


    旋转阶段:
    由线段长度得:
    取刚开始旋转状态,以PM为直径作圆,则H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T

    设,则
    在中:


    设,则,,
    ,,
    ∵DM为直径

    在中 :
    在中:
    在中:
    ∴,
    PQ转过的角度:
    s
    总时间:
    ③设CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
    当旋转角<30°时,DE在DH的左侧,如图:

    ∵∠EDF=30°,∠C=30°,
    ∴∠EDF=∠C,
    又∵∠DEF=∠CED,
    ∴,
    ∴,即,
    ∴,
    ∵在中,,
    ∴,

    当旋转角≥30°时,DE在DH上或右侧,如图:CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
    同理:可得


    综上所述:.
    27.(2022遵义)综合与实践
    “善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.
    提出问题:
    如图1,在线段同侧有两点,,连接,,,,如果,那么,,,四点在同一个圆上.

    探究展示:
    如图2,作经过点,,的,在劣弧上取一点(不与,重合),连接,则(依据1)



    点,,,四点在同一个圆上(对角互补的四边形四个顶点共圆)
    点,在点,,所确定的上(依据2)
    点,,,四点在同一个圆上
    (1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?
    依据1:__________;依据2:__________.
    (2)如图3,在四边形中,,,则的度数为__________.

    (3)拓展探究:如图4,已知是等腰三角形,,点在上(不与的中点重合),连接.作点关于的对称点,连接并延长交的延长线于,连接,.

    ①求证:,,,四点共圆;
    ②若,的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.
    【答案】
    (1)如图2,作经过点,,的,在劣弧上取一点(不与,重合),连接,则(圆内接四边形对角互补)



    点,,,四点在同一个圆上(对角互补的四边形四个顶点共圆)
    点,在点,,所确定的上(同圆中,同弧所对的圆周角相等)
    点,,,四点在同一个圆上
    故答案为:圆内接四边形对角互补;同圆中,同弧所对的圆周角相等
    (2)在线段同侧有两点,,
    四点共圆,


    故答案为:
    (3)①,

    点与点关于对称,


    四点共圆;
    ②,理由如下,
    如图,四点共圆,

    关于对称,







    又,









    相关试卷

    2018-2023陕西中考数学真题分类汇编——圆汇编:

    这是一份2018-2023陕西中考数学真题分类汇编——圆汇编,共6页。

    2023年全国各地中考数学真题分类汇编之圆的有关位置关系(含解析):

    这是一份2023年全国各地中考数学真题分类汇编之圆的有关位置关系(含解析),共73页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2021年中考数学真题复习汇编:专题24圆(圆选填题40道)(第02期)(含解析):

    这是一份2021年中考数学真题复习汇编:专题24圆(圆选填题40道)(第02期)(含解析),共42页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map