![12.3 第2课时 角的平分线的性质(2) 人教版八年级上册数学课后习题(含答案)第1页](http://m.enxinlong.com/img-preview/2/3/13411147/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![12.3 第2课时 角的平分线的性质(2) 人教版八年级上册数学课后习题(含答案)第2页](http://m.enxinlong.com/img-preview/2/3/13411147/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学八年级上册12.3 角的平分线的性质第2课时当堂检测题
展开
这是一份数学八年级上册12.3 角的平分线的性质第2课时当堂检测题,共4页。试卷主要包含了能力提升,创新应用等内容,欢迎下载使用。
一、能力提升
1.如图,点D在BC上,若DE⊥AB于点E,DF⊥AC于点F,则对于∠1和∠2的大小关系,下列说法正确的是( )
A.一定相等B.一定不相等
C.当BD=CD时相等D.当DE=DF时相等
2.一块三角形草坪如图所示,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )
A.△ABC的三条中线的交点处
B.边BC的中点处
C.△ABC三条角平分线的交点处
D.△ABC三条高所在直线的交点处
3.如图,三条公路两两相交,交点分别为A,B,C.现计划修一个油库,要求到这三条公路的距离相等,可供选择的地址有( )
A.一处B.两处
C.三处D.四处
4.如图,在Rt△ABC中,∠C=90°,AB=10 cm,BC=8 cm,AC=6 cm,点O是△ABC三条角平分线的交点,OD⊥BC于点D,OE⊥AC于点E,OF⊥AB于点F,则点O到三边AB,AC,BC的距离分别是( )
A.2 cm,2cm,2 cm
B.4 cm,4cm,4 cm
C.5 cm,5cm,5 cm
D.2 cm,3 cm,5 cm
5.如图,AB∥CD,点P到AB,BC,CD的距离相等,则∠P= .
6.如图,在△ABC中,BP,CP分别是△ABC的外角的平分线.求证:点P在∠BAC的平分线上.
二、创新应用
★7.小明发现了一种画角的平分线的方法:如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.小明过点O,C画射线OC,就得到OC是∠AOB的平分线.请你证明这一结论的正确性.
知能演练·提升
一、能力提升
1.D 2.C
3.D △ABC的两个内角平分线的交点,以及三个外角两两平分线的交点都满足要求.
4.A 如图,连接OA,OB,OC,
则S△ABC=S△OAB+S△OBC+S△OCA.
而S△ABC=12×6×8,
S△OAB=12×10·OF,S△OBC=12×8·OD,S△OCA=12×6·OE.
因为点O是△ABC三条角平分线的交点,
所以OD=OE=OF.
设OD=xcm,
则10x+6x+8x=48,解得x=2.
5.90° 由题意可知点P是∠ABC和∠BCD的平分线的交点.
又因为AB∥CD,
所以∠ABC+∠BCD=180°.
所以∠PBC+∠PCB=90°,即∠P=90°.
6.证明如图,过点P作PE⊥AB于点E,PF⊥AC于点F,PD⊥BC于点D.
∵点P在∠EBC的平分线上,PE⊥AB,PD⊥BC,
∴PE=PD.同理PD=PF,∴PE=PD=PF.
又PE⊥AB,PF⊥AC,
∴点P在∠BAC的平分线上.
二、创新应用
7.证明过点C作CG⊥OA于点G,CF⊥OB于点F.如图,在△MOE和△NOD中,OM=ON,∠MOE=∠NOD,OE=OD,∴△MOE≌△NOD(SAS).
∴S△MOE=S△NOD,
∴S△MOE-S四边形ODCE=S△NOD-S四边形ODCE,
即S△MDC=S△NEC.
∵OM=ON,OD=OE,
∴MD=NE.
由三角形面积公式得12DM·CG=12EN·CF,
∴CG=CF.
又CG⊥OA,CF⊥OB,
∴点C在∠AOB的平分线上,即OC是∠AOB的平分线.
相关试卷
这是一份数学八年级上册12.3 角的平分线的性质第2课时同步测试题,共4页。试卷主要包含了3 角的平分线的性质等内容,欢迎下载使用。
这是一份数学人教版12.3 角的平分线的性质精品第1课时复习练习题,共4页。试卷主要包含了能力提升,创新应用等内容,欢迎下载使用。
这是一份人教版八年级上册12.3 角的平分线的性质优秀第2课时当堂达标检测题
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)