开学活动
搜索
    上传资料 赚现金

    2022年景德镇市重点中学中考数学考前最后一卷含解析

    2022年景德镇市重点中学中考数学考前最后一卷含解析第1页
    2022年景德镇市重点中学中考数学考前最后一卷含解析第2页
    2022年景德镇市重点中学中考数学考前最后一卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年景德镇市重点中学中考数学考前最后一卷含解析

    展开

    这是一份2022年景德镇市重点中学中考数学考前最后一卷含解析,共23页。试卷主要包含了函数y=中,x的取值范围是,下列计算结果是x5的为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是(   )

    A. B.a C. D.
    2.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于(  )

    A.35° B.45° C.55° D.25°
    3.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为( )

    A.(0, 1) B.(1, -1) C.(0, -1) D.(1, 0)
    4.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为(  )
    A. B.2 C. D.
    5.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为(  )
    A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)
    C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)
    6.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是(  )

    A.3m B. m C. m D.4m
    7.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为(  )

    A. B. C. D.
    8.函数y=中,x的取值范围是(  )
    A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
    9.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是(  )

    A.(6,4) B.(4,6) C.(5,4) D.(4,5)
    10.下列计算结果是x5的为(  )
    A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
    11.二次函数y=(2x-1)2+2的顶点的坐标是(  )
    A.(1,2) B.(1,-2) C.(,2)    D.(-,-2)
    12.如图,△ABC中,DE∥BC,,AE=2cm,则AC的长是(  )

    A.2cm B.4cm C.6cm D.8cm
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.对于函数,我们定义(m、n为常数).
    例如,则.
    已知:.若方程有两个相等实数根,则m的值为__________.
    14.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.

    15.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为 .
    16.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.

    17.若a2+3=2b,则a3﹣2ab+3a=_____.
    18.分解因式:4m2﹣16n2=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3).
    (1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;
    (2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点
    B1的坐标;
    (3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧;

    请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标.
    20.(6分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.
    21.(6分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.

    22.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.

    23.(8分)如图,AB∥CD,∠1=∠2,求证:AM∥CN

    24.(10分)问题提出
    (1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∠ADC=60°,则四边形 ABCD 的面积为 _;
    问题探究
    (2).如图 2,在四边形 ABCD 中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得△BEF 的周长最小,作出图像即可.

    25.(10分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.
    (1)求证:BP平分∠ABC;
    (2)若PC=1,AP=3,求BC的长.

    26.(12分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:

    请根据以上统计图提供的信息,解答下列问题:
    (1)共抽取   名学生进行问卷调查;
    (2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;
    (3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.
    (4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.
    27.(12分)先化简,再求值:,其中m是方程的根.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
    ∴MG=CG=×a=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    2、A
    【解析】
    根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.
    【详解】
    解:∵BC⊥AE,
    ∴∠BCE=90°,
    ∵CD∥AB,∠B=55°,
    ∴∠BCD=∠B=55°,
    ∴∠1=90°-55°=35°,
    故选:A.
    【点睛】
    本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    3、B
    【解析】
    试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.
    试题解析:由图形可知,

    对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.
    故旋转中心坐标是P(1,-1)
    故选B.
    考点:坐标与图形变化—旋转.
    4、C
    【解析】
    根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
    【详解】
    如图所示,

    单位圆的半径为1,则其内接正六边形ABCDEF中,
    △AOB是边长为1的正三角形,
    所以正六边形ABCDEF的面积为
    S6=6××1×1×sin60°=.
    故选C.
    【点睛】
    本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
    5、A
    【解析】
    分顺时针旋转,逆时针旋转两种情形求解即可.
    【详解】
    解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),

    故选A.
    【点睛】
    本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.
    6、B
    【解析】
    因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.
    【详解】
    解:∵sin∠CAB=
    ∴∠CAB=45°.
    ∵∠C′AC=15°,
    ∴∠C′AB′=60°.
    ∴sin60°=,
    解得:B′C′=3.
    故选:B.
    【点睛】
    此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.
    7、A
    【解析】
    分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.
    详解:连接OE1,OD1,OD2,如图,

    ∵六边形A1B1C1D1E1F1为正六边形,
    ∴∠E1OD1=60°,
    ∴△E1OD1为等边三角形,
    ∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,
    ∴OD2⊥E1D1,
    ∴OD2=E1D1=×2,
    ∴正六边形A2B2C2D2E2F2的边长=×2,
    同理可得正六边形A3B3C3D3E3F3的边长=()2×2,
    则正六边形A11B11C11D11E11F11的边长=()10×2=.
    故选A.
    点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.
    8、D
    【解析】
    试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.
    故选D.
    点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.
    9、D
    【解析】
    过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.
    【详解】

    如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,
    ∵O′为圆心,
    ∴AC=BC,
    ∵A(0,2),B(0,8),
    ∴AB=8−2=6,
    ∴AC=BC=3,
    ∴OC=8−3=5,
    ∵⊙O′与x轴相切,
    ∴O′D=O′B=OC=5,
    在Rt△O′BC中,由勾股定理可得O′C===4,
    ∴P点坐标为(4,5),
    故选:D.
    【点睛】
    本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.
    10、C
    【解析】解:A.x10÷x2=x8,不符合题意;
    B.x6﹣x不能进一步计算,不符合题意;
    C.x2x3=x5,符合题意;
    D.(x3)2=x6,不符合题意.
    故选C.
    11、C
    【解析】
    试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)
    考点:二次函数
    点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系
    12、C
    【解析】
    由∥可得△ADE∽△ABC,再根据相似三角形的性质即可求得结果.
    【详解】
    ∵∥
    ∴△ADE∽△ABC


    ∴AC=6cm
    故选C.
    考点:相似三角形的判定和性质
    点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    分析:根据题目中所给定义先求,再利用根与系数关系求m值.
    详解:由所给定义知,,若
    =0,
    解得m=.
    点睛:一元二次方程的根的判别式是,
    △=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.
    △>0说明方程有两个不同实数解,
    △=0说明方程有两个相等实数解,

    相关试卷

    广州市重点中学2021-2022学年中考数学考前最后一卷含解析:

    这是一份广州市重点中学2021-2022学年中考数学考前最后一卷含解析,共18页。试卷主要包含了已知点P等内容,欢迎下载使用。

    2022年宜昌市重点中学中考数学考前最后一卷含解析:

    这是一份2022年宜昌市重点中学中考数学考前最后一卷含解析,共24页。试卷主要包含了答题时请按要求用笔,估计5﹣的值应在,下列算式中,结果等于a5的是等内容,欢迎下载使用。

    2022年江西省景德镇市名校中考考前最后一卷数学试卷含解析:

    这是一份2022年江西省景德镇市名校中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了函数y=的自变量x的取值范围是,如图所示的几何体的主视图是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map