|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年吉林省重点中学中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2022年吉林省重点中学中考考前最后一卷数学试卷含解析01
    2022年吉林省重点中学中考考前最后一卷数学试卷含解析02
    2022年吉林省重点中学中考考前最后一卷数学试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年吉林省重点中学中考考前最后一卷数学试卷含解析

    展开
    这是一份2022年吉林省重点中学中考考前最后一卷数学试卷含解析,共22页。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
    A.1 B. C. D.
    2.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是( )

    A.44° B.53° C.72° D.54°
    3.下列运算正确的是(  )
    A.a2•a3=a6 B.()﹣1=﹣2 C. =±4 D.|﹣6|=6
    4.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?(  )

    A. B. C. D.
    5.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )

    A.1 B.2 C.3 D.4
    6.已知二次函数 图象上部分点的坐标对应值列表如下:
    x


    -3
    -2
    -1
    0
    1
    2

    y


    2
    -1
    -2
    -1
    2
    7

    则该函数图象的对称轴是( )
    A.x=-3 B.x=-2 C.x=-1 D.x=0
    7.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
    A.x1=1,x2=-1 B.x1=1,x2=2
    C.x1=1,x2=0 D.x1=1,x2=3
    8.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是(  )

    A. B. C. D.
    9.下列四个几何体中,主视图是三角形的是(  )
    A. B. C. D.
    10.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )

    A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
    C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
    11.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    12.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
    A.k>1 B.k>0 C.k≥1 D.k<1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.解不等式组
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得________;
    (2)解不等式②,得________;
    (3)把不等式①和②的解集在数轴上表示出来;

    (4)原不等式组的解集为___________.
    14.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.

    15.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.

    16.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
    17.如图,矩形ABCD中,如果以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,那么 的值等于________.(结果保留两位小数)

    18.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
    (1)求抛物线的解析式;
    (2)猜想△EDB的形状并加以证明;
    (3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

    20.(6分)已知关于x的一元二次方程.求证:方程有两个不相等的实数根;如果方程的两实根为,,且,求m的值.
    21.(6分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:

    请依据统计结果回答下列问题:本次调查中,一共调查了   位好友.已知A类好友人数是D类好友人数的5倍.
    ①请补全条形图;
    ②扇形图中,“A”对应扇形的圆心角为   度.
    ③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
    22.(8分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.
    (1)求∠C的度数;
    (2)求证:BC是⊙O的切线.

    23.(8分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
    求证:AB=DC.

    24.(10分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.
    求证:△AED≌△EBC;当AB=6时,求CD的长.
    25.(10分)先化简,再求值:,且x为满足﹣3<x<2的整数.
    26.(12分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.

    27.(12分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.
    (1)若点A的坐标为(1,0).
    ①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;
    ②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
    (2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    直接利用概率的意义分析得出答案.
    【详解】
    解:因为一枚质地均匀的硬币只有正反两面,
    所以不管抛多少次,硬币正面朝上的概率都是,
    故选B.
    【点睛】
    此题主要考查了概率的意义,明确概率的意义是解答的关键.
    2、D
    【解析】
    根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.
    【详解】
    根据直径所对的圆周角为直角可得∠BAE=90°,
    根据∠E=36°可得∠B=54°,
    根据平行四边形的性质可得∠ADC=∠B=54°.
    故选D
    【点睛】
    本题考查了平行四边形的性质、圆的基本性质.
    3、D
    【解析】
    运用正确的运算法则即可得出答案.
    【详解】
    A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.
    【点睛】
    本题考查了四则运算法则,熟悉掌握是解决本题的关键.
    4、C
    【解析】
    分析:求出扇形的圆心角以及半径即可解决问题;
    详解:∵∠A=60°,∠B=100°,
    ∴∠C=180°﹣60°﹣100°=20°,
    ∵DE=DC,
    ∴∠C=∠DEC=20°,
    ∴∠BDE=∠C+∠DEC=40°,
    ∴S扇形DBE=.
    故选C.
    点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
    5、C
    【解析】
    ∵∠ACD=∠B,∠A=∠A,
    ∴△ACD∽△ABC,
    ∴,
    ∴,
    ∴,
    ∴S△ABC=4,
    ∴S△BCD= S△ABC- S△ACD=4-1=1.
    故选C
    考点:相似三角形的判定与性质.
    6、C
    【解析】
    由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
    【详解】
    解:∵x=-2和x=0时,y的值相等,
    ∴二次函数的对称轴为,
    故答案为:C.
    【点睛】
    本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
    7、B
    【解析】
    试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
    ∴.∴.故选B.
    8、B
    【解析】
    试题解析:由图可知可以瞄准的点有2个.

    ∴B球一次反弹后击中A球的概率是.
    故选B.
    9、D
    【解析】
    主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.
    【详解】
    解:主视图是三角形的一定是一个锥体,只有D是锥体.
    故选D.
    【点睛】
    此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.
    10、D
    【解析】
    首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
    【详解】
    解:

    四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
    ,,
    四边形是平行四边形(对边相互平行的四边形是平行四边形);
    过点分别作,边上的高为,.则
    (两纸条相同,纸条宽度相同);
    平行四边形中,,即,
    ,即.故正确;
    平行四边形为菱形(邻边相等的平行四边形是菱形).
    ,(菱形的对角相等),故正确;
    ,(平行四边形的对边相等),故正确;
    如果四边形是矩形时,该等式成立.故不一定正确.
    故选:.
    【点睛】
    本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
    11、D
    【解析】
    由抛物线的开口向下知a<0,
    与y轴的交点为在y轴的正半轴上,得c>0,
    对称轴为x= <1,∵a<0,∴2a+b<0,
    而抛物线与x轴有两个交点,∴ −4ac>0,
    当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.
    ∵ >2,∴4ac−<8a,∴+8a>4ac,
    ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.
    由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,
    上面两个相加得到6a<−6,∴a<−1.故选D.
    点睛:本题考查了二次函数图象与系数的关系,二次函数 中,a的符号由抛物线的开口方向决定;c的符号由抛物线与y轴交点的位置决定;b的符号由对称轴位置与a的符号决定;抛物线与x轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.
    12、A
    【解析】
    根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
    【详解】
    解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
    即可得k﹣1>0,
    解得k>1.
    故选A.
    【点评】
    本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;
    【解析】
    (1)先移项,再合并同类项,求出不等式1的解集即可;
    (2)先去分母、移项,再合并同类项,求出不等式2的解集即可;
    (1)把两不等式的解集在数轴上表示出来即可;
    (4)根据数轴上不等式的解集,求出其公共部分即可.
    【详解】
    (1)解不等式①,得:x<1;
    (2)解不等式②,得:x≥﹣2;
    (1)把不等式①和②的解集在数轴上表示出来如下:

    (4)原不等式组的解集为:﹣2≤x<1,
    故答案为:x<1、x≥﹣2、﹣2≤x<1.
    【点睛】
    本题主要考查一元一次不等式组的解法及在数轴上的表示。
    14、1≤x≤1
    【解析】
    此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;
    【详解】
    解:如图:①当F、D重合时,BP的值最小;

    根据折叠的性质知:AF=PF=5;
    在Rt△PFC中,PF=5,FC=1,则PC=4;
    ∴BP=xmin=1;
    ②当E、B重合时,BP的值最大;
    由折叠的性质可得BP=AB=1.
    所以BP的取值范围是:1≤x≤1.
    故答案为:1≤x≤1.
    【点睛】
    此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.
    15、1.
    【解析】
    分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.
    详解:矩形的周长=3+3+2+2=1.
    点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.
    16、k≥﹣1
    【解析】
    分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.
    详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
    ∴△=12-1×1×(-k)=16+1k≥0,
    解得:k≥-1.
    故答案为k≥-1.
    点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
    17、3.1
    【解析】
    分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.
    详解:∵以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴=π≈3.1.
    故答案为3.1.
    点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.
    18、2
    【解析】
    根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.
    【详解】
    由题意得,(x+2)2﹣(x+2)(x﹣2)=6,
    整理得,3x+3=6,
    解得,x=2,
    故答案为2.
    【点睛】
    本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)(,2)或(,﹣2).
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
    (3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.
    【详解】
    解:(1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣,
    ∴抛物线解析式为y=﹣(x﹣2)2+3,即y=﹣x2+3x;
    (2)△EDB为等腰直角三角形.
    证明:
    由(1)可知B(4,3),且D(3,0),E(0,1),
    ∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
    ∴DE2+BD2=BE2,且DE=BD,
    ∴△EDB为等腰直角三角形;
    (3)存在.理由如下:
    设直线BE解析式为y=kx+b,
    把B、E坐标代入可得,解得,
    ∴直线BE解析式为y=x+1,
    当x=2时,y=2,
    ∴F(2,2),
    ①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,
    ∴点M的纵坐标为2或﹣2,
    在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,
    ∵点M在抛物线对称轴右侧,
    ∴x>2,
    ∴x=,
    ∴M点坐标为(,2);
    在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,
    ∵点M在抛物线对称轴右侧,
    ∴x>2,
    ∴x=,
    ∴M点坐标为(,﹣2);
    ②当AF为平行四边形的对角线时,
    ∵A(4,0),F(2,2),
    ∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),
    设M(t,﹣t2+3t),N(x,0),
    则﹣t2+3t=2,解得t=,
    ∵点M在抛物线对称轴右侧,
    ∴x>2,
    ∵t>2,
    ∴t=,
    ∴M点坐标为(,2);
    综上可知存在满足条件的点M,其坐标为(,2)或(,﹣2).
    【点睛】
    本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.
    20、(1)证明见解析(1)1或1
    【解析】
    试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;
    (1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.
    试题解析:(1)证明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有两个不相等的实数根;
    (1)∵,方程的两实根为,,且,∴ , ,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.
    21、(1)30;(2)①补图见解析;②120;③70人.
    【解析】
    分析:(1)由B类别人数及其所占百分比可得总人数;
    (2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;
    ②用360°乘以A类别人数所占比例可得;
    ③总人数乘以样本中C、D类别人数和所占比例.
    详解:(1)本次调查的好友人数为6÷20%=30人,
    故答案为:30;
    (2)①设D类人数为a,则A类人数为5a,
    根据题意,得:a+6+12+5a=30,
    解得:a=2,
    即A类人数为10、D类人数为2,
    补全图形如下:

    ②扇形图中,“A”对应扇形的圆心角为360°×=120°,
    故答案为:120;
    ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.
    点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    22、(1)60°;(2)见解析
    【解析】
    (1)连接BD,由AD为圆的直径,得到∠ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出∠CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出∠C的度数;
    (2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出∠ABC度数,由∠ABC﹣∠ABO度数确定出∠OBC度数为90,即可得证;
    【详解】
    (1)如图,连接BD,

    ∵AD为圆O的直径,
    ∴∠ABD=90°,
    ∴BD=AD=3,
    ∵CD∥AB,∠ABD=90°,
    ∴∠CDB=∠ABD=90°,
    在Rt△CDB中,tanC=,
    ∴∠C=60°;
    (2)连接OB,
    ∵∠A=30°,OA=OB,
    ∴∠OBA=∠A=30°,
    ∵CD∥AB,∠C=60°,
    ∴∠ABC=180°﹣∠C=120°,
    ∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,
    ∴OB⊥BC,
    ∴BC为圆O的切线.
    【点睛】
    此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.
    23、∵平分平分,

    在与中,



    【解析】
    分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.
    解答:证明:∵AC平分∠BCD,BC平分∠ABC,
    ∴∠DBC=∠ABC,∠ACB=∠DCB,
    ∵∠ABC=∠DCB,
    ∴∠ACB=∠DBC,
    ∵在△ABC与△DCB中,

    ∴△ABC≌△DCB,
    ∴AB=DC.
    24、(1)证明见解析;(2)CD =3
    【解析】
    分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;
    (2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.
    详解:
    (1)证明 :∵AD∥EC
    ∴∠A=∠BEC
    ∵E是AB中点,
    ∴AE=BE
    ∵∠AED=∠B
    ∴△AED≌△EBC
    (2)解 :∵△AED≌△EBC
    ∴AD=EC
    ∵AD∥EC
    ∴四边形AECD是平行四边形
    ∴CD=AE
    ∵AB=6
    ∴CD= AB=3
    点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    25、-5
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3
    由于x≠0且x≠1且x≠﹣2,
    所以x=﹣1,
    原式=﹣2﹣3=﹣5
    【点睛】
    本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    26、50°.
    【解析】
    试题分析:由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.
    解:∵AB∥CD,
    ∴∠ABC=∠1=65°,
    ∵BC平分∠ABD,
    ∴∠ABD=2∠ABC=130°,
    ∴∠BDE=180°﹣∠ABD=50°,
    ∴∠2=∠BDE=50°.

    【点评】
    本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.
    27、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
    【解析】
    试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;
    ②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;
    (2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.
    试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:
    (x﹣h)2﹣2=0,解得:h=3或h=﹣1,
    ∵点A在点B的左侧,∴h>0,∴h=3,
    ∴抛物线l的表达式为:y=(x﹣3)2﹣2,
    ∴抛物线的对称轴是:直线x=3,
    由对称性得:B(5,0),
    由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;
    ②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,
    由对称性得:DF=PD,
    ∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,
    ∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,
    设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),
    ∵点F、Q在抛物线l上,
    ∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,
    ∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],
    解得:a=或a=0(舍),∴P(,);

    (2)当y=0时,(x﹣h)2﹣2=0,
    解得:x=h+2或h﹣2,
    ∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),
    如图3,作抛物线的对称轴交抛物线于点C,
    分两种情况:
    ①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,
    则,∴3≤h≤4,
    ②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,
    即:h+2≤2,h≤0,
    综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.

    考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.

    相关试卷

    2022年商洛市重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年商洛市重点中学中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了已知二次函数y=等内容,欢迎下载使用。

    2022年潍坊市重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年潍坊市重点中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了如图所示,下列各式计算正确的是,下列计算正确的是等内容,欢迎下载使用。

    2022年汕头市重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年汕头市重点中学中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map