年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江西省抚州市金溪县2021-2022学年中考数学考前最后一卷含解析

    江西省抚州市金溪县2021-2022学年中考数学考前最后一卷含解析第1页
    江西省抚州市金溪县2021-2022学年中考数学考前最后一卷含解析第2页
    江西省抚州市金溪县2021-2022学年中考数学考前最后一卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省抚州市金溪县2021-2022学年中考数学考前最后一卷含解析

    展开

    这是一份江西省抚州市金溪县2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了-2的绝对值是,下列计算结果是x5的为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是(  )

    A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB
    2.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
    型号(厘米)
    38
    39
    40
    41
    42
    43
    数量(件)
    25
    30
    36
    50
    28
    8
    商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
    A.平均数 B.中位数 C.众数 D.方差
    3.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得(  )
    A.
    B.
    C.
    D.
    4.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
    t
    0
    1
    2
    3
    4
    5
    6
    7

    h
    0
    8
    14
    18
    20
    20
    18
    14

    下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是( )
    A.1 B.2 C.3 D.4
    5.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )

    A. B. C. D.
    6.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )

    A.80° B.90° C.100° D.102°
    7.-2的绝对值是()
    A.2 B.-2 C.±2 D.
    8.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(      ).

    A. B. C. D.
    9.下列计算结果是x5的为(  )
    A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
    10.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
    A. B.
    C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如果某数的一个平方根是﹣5,那么这个数是_____.
    12.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:
    x

    ﹣5
    ﹣4
    ﹣3
    ﹣2
    ﹣1

    y

    ﹣8
    ﹣3
    0
    1
    0

    当y<﹣3时,x的取值范围是_____.
    13.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.

    14.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).
    15.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.
    16.已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为______.
    17.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.

    三、解答题(共7小题,满分69分)
    18.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.

    队别
    平均分
    中位数
    方差
    合格率
    优秀率
    七年级
    6.7
    m
    3.41
    90%
    n
    八年级
    7.1
    7.5
    1.69
    80%
    10%
    (1)请依据图表中的数据,求a、b的值;
    (2)直接写出表中的m、n的值;
    (3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
    19.(5分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.
    (1)求m的取值范围;
    (2)若m为非负整数,且该方程的根都是无理数,求m的值.
    20.(8分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE

    21.(10分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
    求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
    22.(10分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).
    (1)求直线y=kx+m的表达式;
    (2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.

    23.(12分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).
    参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.

    24.(14分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
    分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据三角形中位线定理判断即可.
    【详解】
    ∵AD为△ABC的中线,点E为AC边的中点,
    ∴DC=BC,DE=AB,
    ∵BC不一定等于AB,
    ∴DC不一定等于DE,A不一定成立;
    ∴AB=2DE,B一定成立;
    S△CDE=S△ABC,C一定成立;
    DE∥AB,D一定成立;
    故选A.
    【点睛】
    本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    2、B
    【解析】
    分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
    详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
    故选:C.
    点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    3、D
    【解析】
    根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
    【详解】
    设每枚黄金重x两,每枚白银重y两,
    由题意得:,
    故选:D.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
    4、B
    【解析】
    试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.
    5、A
    【解析】
    试题分析:观察图形可知,该几何体的主视图是.故选A.
    考点:简单组合体的三视图.
    6、A
    【解析】
    分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
    详解:∵AB∥CD.
    ∴∠A=∠3=40°,
    ∵∠1=60°,
    ∴∠2=180°∠1−∠A=80°,
    故选:A.
    点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
    7、A
    【解析】
    根据绝对值的性质进行解答即可
    【详解】
    解:﹣1的绝对值是:1.
    故选:A.
    【点睛】
    此题考查绝对值,难度不大
    8、D
    【解析】
    根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.
    【详解】
    由DE∥BC,可得△ADE∽△ABC,并可得:
    ,,,故A,B,C正确;D错误;
    故选D.
    【点睛】
    考点:1.平行线分线段成比例;2.相似三角形的判定与性质.
    9、C
    【解析】解:A.x10÷x2=x8,不符合题意;
    B.x6﹣x不能进一步计算,不符合题意;
    C.x2x3=x5,符合题意;
    D.(x3)2=x6,不符合题意.
    故选C.
    10、C
    【解析】
    试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
    考点:由实际问题抽象出分式方程.

    二、填空题(共7小题,每小题3分,满分21分)
    11、25
    【解析】
    利用平方根定义即可求出这个数.
    【详解】
    设这个数是x(x≥0),所以x=(-5)2=25.
    【点睛】
    本题解题的关键是掌握平方根的定义.
    12、x<﹣4或x>1
    【解析】
    观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y<-3时,x的取值范围即可.
    【详解】
    由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,
    且x=1时,y=-3,
    所以,y<-3时,x的取值范围为x<-4或x>1.
    故答案为x<-4或x>1.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键.
    13、50°
    【解析】
    延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.
    【详解】
    延长BF交CD于G
    由折叠知,
    BE=CF, ∠1=∠2, ∠7=∠8,
    ∴∠3=∠4.
    ∵∠1+∠2=∠3+∠4,
    ∴∠1=∠2=∠3=∠4,
    ∵CD∥AB,
    ∴∠3=∠5,
    ∴∠1=∠5,
    在△BCG和△DAE中
    ∵∠1=∠5,
    ∠C=∠A,
    BC=AD,
    ∴△BCG≌△DAE,
    ∴∠7=∠6=25°,
    ∴∠8=∠7=25°,
    ∴FDA=50°.
    故答案为50°.

    【点睛】
    本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.
    14、0.50
    【解析】
    直接使用科学计算器计算即可,结果需保留二位有效数字.
    【详解】
    用科学计算器计算得0.5,
    故填0.50,
    【点睛】
    此题主要考查科学计算器的使用,注意结果保留二位有效数字.
    15、
    【解析】
    列举出所有情况,看在第四象限的情况数占总情况数的多少即可.
    【详解】
    如图:

    共有12种情况,在第三象限的情况数有2种,
    故不再第三象限的共10种,
    不在第三象限的概率为,
    故答案为.
    【点睛】
    本题考查了树状图法的知识,解题的关键是列出树状图求出概率.
    16、
    【解析】
    试题分析:当n=3时,A=≈0.3178,B=1,A<B;
    当n=4时,A=≈0.2679,B=≈0.4142,A<B;
    当n=5时,A=≈0.2631,B=≈0.3178,A<B;
    当n=6时,A=≈0.2134,B=≈0.2679,A<B;
    ……
    以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n≥3时,A、B的关系始终是A<B.
    17、.
    【解析】
    如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
    【详解】
    如图,
    ∵四边形CDEF是正方形,
    ∴CD=ED,DE∥CF,
    设ED=x,则CD=x,AD=12-x,
    ∵DE∥CF,
    ∴∠ADE=∠C,∠AED=∠B,
    ∴△ADE∽△ACB,
    ∴=,
    ∴=,
    ∴x=,
    故答案为.

    【点睛】
    本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.
    【解析】
    试题分析:(1)根据题中数据求出a与b的值即可;
    (2)根据(1)a与b的值,确定出m与n的值即可;
    (3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.
    试题解析:(1)根据题意得:
    解得a=5,b=1;
    (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;
    优秀率为=20%,即n=20%;
    (3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,
    故八年级队比七年级队成绩好.
    考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.
    19、(1)m<2;(2)m=1.
    【解析】
    (1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
    (2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值.
    【详解】
    (1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.
    ∵方程有两个不相等的实数根,
    ∴△>3.
    即﹣8m+2>3.
    解得 m<2;
    (2)∵m<2,且 m 为非负整数,
    ∴m=3 或 m=1,
    当 m=3 时,原方程为 x2-2x-3=3,
    解得 x1=3,x2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x2﹣2=3,
    解得 x1=,x2=﹣ ,
    综上所述,m=1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.
    20、证明见解析.
    【解析】
    易证△DAC≌△CEF,即可得证.
    【详解】
    证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,
    ∴∠DCA=∠CFE,在△DAC和△CEF中:,
    ∴△DAC≌△CEF(AAS),
    ∴AD=CE,AC=EF,
    ∴AE=AD+EF
    【点睛】
    此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.
    21、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
    【解析】
    (1)证明:∵CF∥AB,
    ∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,
    ∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.
    (2)四边形BDCF是矩形.
    证明:由(1)知DB=CF,又DB∥CF,
    ∴四边形BDCF为平行四边形.
    ∵AC=BC,AD=DB,∴CD⊥AB.
    ∴四边形BDCF是矩形.
    22、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).
    【解析】
    (1)将A代入反比例函数中求出m的值,即可求出直线解析式,
    (2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.
    【详解】
    解:(1)∵点A(m,2)在双曲线上,
    ∴m=﹣1,
    ∴A(﹣1,2),直线y=kx﹣1,
    ∵点A(﹣1,2)在直线y=kx﹣1上,
    ∴y=﹣3x﹣1.
    (2) ,解得或,
    ∴B(,﹣3),
    ∴AB==,设P(n,0),
    则有(n﹣)2+32=
    解得n=5或,
    ∴P1(5,0),P2(,0).
    【点睛】
    本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.
    23、建筑物AB的高度约为30.3m.
    【解析】
    分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.
    详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.
    过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE为矩形,∴DE=BC=2.
    在Rt△ADE中,tan∠ADE=,
    ∴AE=DE•tan30°=.
    在Rt△DEB中,tan∠BDE=,
    ∴BE=DE•tan10°=2×0.18=7.2,
    ∴AB=AE+BE=23.09+7.2=30.29≈30.3.
    答:建筑物AB的高度约为30.3m.

    点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.
    24、 (1)抛物线的解析式是.直线AB的解析式是.
    (2) .
    (3)P点的横坐标是或.
    【解析】
    (1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
    (2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
    当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
    (3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
    【详解】
    解:(1)把A(3,0)B(0,-3)代入,得
    解得
    所以抛物线的解析式是.
    设直线AB的解析式是,把A(3,0)B(0,)代入,得
    解得
    所以直线AB的解析式是.
    (2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时
    ==.
    (3)若存在,则可能是:
    ①P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.
    ②P在第一象限平行四边形OBPM: PM=OB=3,,解得,(舍去),所以P点的横坐标是.
    ③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),
    ①,所以P点的横坐标是.
    所以P点的横坐标是或.

    相关试卷

    江西省莲花县2021-2022学年中考数学考前最后一卷含解析:

    这是一份江西省莲花县2021-2022学年中考数学考前最后一卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是,下列各式中计算正确的是,下列命题是假命题的是等内容,欢迎下载使用。

    江西省抚州市崇仁县2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份江西省抚州市崇仁县2021-2022学年中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,如图,点P等内容,欢迎下载使用。

    江西省丰城市2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份江西省丰城市2021-2022学年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map