江西省莲花县2021-2022学年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )
A.(2,0) B.(3,0) C.(2,-1) D.(2,1)
2.如果,那么( )
A. B. C. D.
3.下列几何体是棱锥的是( )
A. B. C. D.
4.下列命题是真命题的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.两条对角线相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.平行四边形既是中心对称图形,又是轴对称图形
5.下列各式中计算正确的是( )
A.x3•x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t
6.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )
A.90° B.60° C.45° D.30°
7.从 ,0,π, ,6这5个数中随机抽取一个数,抽到有理数的概率是( )
A. B. C. D.
8.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )
A.15° B.35° C.25° D.45°
9.下列命题是假命题的是( )
A.有一个外角是120°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
10.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
11.下列事件中,必然事件是( )
A.若ab=0,则a=0
B.若|a|=4,则a=±4
C.一个多边形的内角和为1000°
D.若两直线被第三条直线所截,则同位角相等
12.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
A.12米 B.4米 C.5米 D.6米
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .
14.若式子有意义,则x的取值范围是_____.
15.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .
16.计算_______.
17.要使分式有意义,则x的取值范围为_________.
18.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
20.(6分)如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.
(1)求证:AB=BC;
(2)如果AB=5,tan∠FAC=,求FC的长.
21.(6分)已知函数的图象与函数的图象交于点.
(1)若,求的值和点P的坐标;
(2)当时,结合函数图象,直接写出实数的取值范围.
22.(8分)解方程:
(1)x2﹣7x﹣18=0
(2)3x(x﹣1)=2﹣2x
23.(8分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.
(1)求坡角∠BCD;
(2)求旗杆AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
24.(10分)如图,在中,AB=AC,,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.
(1)∠EDB=_____(用含的式子表示)
(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.
①根据条件补全图形;
②写出DM与DN的数量关系并证明;
③用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.
25.(10分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.
(2)求乙组加工零件总量a的值.
26.(12分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.求证:EM是⊙O的切线;若∠A=∠E,BC=,求阴影部分的面积.(结果保留和根号).
27.(12分)周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.
(1)求a、b的值.
(2)求甲追上乙时,距学校的路程.
(3)当两人相距500米时,直接写出t的值是 .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
试题解析:AC=2,
则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
则OC′=3,
故C′的坐标是(3,0).
故选B.
考点:坐标与图形变化-旋转.
2、B
【解析】
试题分析:根据二次根式的性质,由此可知2-a≥0,解得a≤2.
故选B
点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.
3、D
【解析】
分析:根据棱锥的概念判断即可.
A是三棱柱,错误;
B是圆柱,错误;
C是圆锥,错误;
D是四棱锥,正确.
故选D.
点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
4、C
【解析】
根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.
【详解】
A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;
B、两条对角线互相平分的四边形是平行四边形.故本选项错误;
C、两组对边分别相等的四边形是平行四边形.故本选项正确;
D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;
故选:C.
【点睛】
考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
5、D
【解析】
试题解析:A、 原式计算错误,故本选项错误;
B、 原式计算错误,故本选项错误;
C、 原式计算错误,故本选项错误;
D、 原式计算正确,故本选项正确;
故选D.
点睛:同底数幂相除,底数不变,指数相减.
6、C
【解析】
试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
试题解析:连接AC,如图:
根据勾股定理可以得到:AC=BC=,AB=.
∵()1+()1=()1.
∴AC1+BC1=AB1.
∴△ABC是等腰直角三角形.
∴∠ABC=45°.
故选C.
考点:勾股定理.
7、C
【解析】
根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.
【详解】
∵在,0,π,,6这5个数中有理数只有0、、6这3个数,
∴抽到有理数的概率是,
故选C.
【点睛】
本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.
8、A
【解析】
根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.
【详解】
∵AB=AC,
∴∠ABC=∠ACB=65°,
∴∠A=180°-∠ABC-∠ACB=50°,
∵DC//AB,
∴∠ACD=∠A=50°,
又∵∠D=∠A=50°,
∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,
故选A.
【点睛】
本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.
9、C
【解析】
解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
B. 等边三角形有3条对称轴,故B选项正确;
C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
D.利用SSS.可以判定三角形全等.故D选项正确;
故选C.
10、A
【解析】
分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.
详解:根据题意得: ,
计算得出:n=20,
故选A.
点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
11、B
【解析】
直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案.
【详解】
解:A、若ab=0,则a=0,是随机事件,故此选项错误;
B、若|a|=4,则a=±4,是必然事件,故此选项正确;
C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;
D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;
故选:B.
【点睛】
此题主要考查了事件的判别,正确把握各命题的正确性是解题关键.
12、A
【解析】
试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).
∴(米).故选A.
【详解】
请在此输入详解!
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、40°
【解析】
连接CD,则∠ADC=∠ABC=50°,
∵AD是⊙O的直径,
∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.
14、x≥﹣2且x≠1.
【解析】
由知,
∴,
又∵在分母上,
∴.故答案为且.
15、①③⑤
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.
【详解】
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此选项成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE= = = ,
∴BF=EF= ,
故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP= ,
又∵PB= ,
∴BE= ,
∵△APD≌△AEB,
∴PD=BE= ,
∴S △ABP+S △ADP=S △ABD-S △BDP= S 正方形ABCD- ×DP×BE= ×(4+ )- × × = + .
故此选项不正确.
⑤∵EF=BF= ,AE=1,
∴在Rt△ABF中,AB 2=(AE+EF) 2+BF 2=4+ ,
∴S 正方形ABCD=AB 2=4+ ,
故此选项正确.
故答案为①③⑤.
【点睛】
本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
16、
【解析】
根据同底数幂的乘法法则计算即可.
【详解】
故答案是:
【点睛】
本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.
17、x≠1
【解析】
由题意得
x-1≠0,
∴x≠1.
故答案为x≠1.
18、15π−18.
【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
【详解】
S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
∵S扇形ACE==12π,
S扇形BCD==3π,
S△ABC=×6×6=18,
∴S阴影部分=12π+3π−18=15π−18.
故答案为15π−18.
【点睛】
本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
【解析】
(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
【详解】
(1)解:设2018至2020年寝室数量的年平均增长率为x,
根据题意得:64(1+x)2=121,
解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
答:2018至2020年寝室数量的年平均增长率为37.5%.
(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
∵单人间的数量在20至30之间(包括20和30),
∴ ,
解得:15 ≤y≤16 .
根据题意得:w=2y+20y+121﹣6y=16y+121,
∴当y=16时,16y+121取得最大值为1.
答:该校的寝室建成后最多可供1名师生住宿.
【点睛】
本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.
20、 (1)见解析;(2).
【解析】
分析:(1)由AB是直径可得BE⊥AC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;
(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长. 作CH⊥AF于H,可证Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.
详解:(1)证明:连接BE.
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE⊥AC,
而点E为AC的中点,
∴BE垂直平分AC,
∴BA=BC;
(2)解:∵AF为切线,
∴AF⊥AB,
∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,
∴∠FAC=∠ABE,
∴tan∠ABE=∠FAC=,
在Rt△ABE中,tan∠ABE==,
设AE=x,则BE=2x,
∴AB=x,即x=5,解得x=,
∴AC=2AE=2,BE=2
作CH⊥AF于H,如图,
∵∠HAC=∠ABE,
∴Rt△ACH∽Rt△BAC,
∴==,即==,
∴HC=2,AH=4,
∵HC∥AB,
∴=,即=,解得FH=
在Rt△FHC中,FC==.
点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.
21、(1),,或;(2) .
【解析】
【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;
(2)画出两个函数的图象,观察函数的图象即可得.
【详解】(1)∵函数的图象交于点,
∴n=mk,
∵m=2n,∴n=2nk,
∴k=,
∴直线解析式为:y=x,
解方程组,得,,
∴交点P的坐标为:(,)或(-,-);
(2)由题意画出函数的图象与函数的图象如图所示,
∵函数的图象与函数的交点P的坐标为(m,n),
∴当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,
当k>1时,结合图象可知此时|m|<|n|,
∴当时,≥1.
【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.
22、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣ .
【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:(1)x2﹣7x﹣18=0,
(x﹣9)(x+2)=0,
x﹣9=0,x+2=0,
x1=9,x2=﹣2;
(2)3x(x﹣1)=2﹣2x,
3x(x﹣1)+2(x﹣1)=0,
(x﹣1)(3x+2)=0,
x﹣1=0,3x+2=0,
x1=1,x2=﹣ .
【点睛】
本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.
23、旗杆AB的高度为6.4米.
【解析】
分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;
(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.
本题解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD= ,
∴∠BCD=30°;
(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,
则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),
∵∠AEG=45°,∴AG=DE=10(米),
在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),
则AB=AG−BG=10−3.6=6.4(米).
答:旗杆AB的高度为6.4米。
24、(1);(2)(2)①见解析;②DM=DN,理由见解析;③数量关系:
【解析】
(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;
(2)①如图,利用∠EDF=180°﹣2α画图;
②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;
③先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsinα,从而有BM+CN=BC•sinα.
【详解】
(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.
∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.
故答案为:α;
(2)①如图:
②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.
∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°.
∵∠A=2α,∴∠EDF=180°﹣2α.
∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.
在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;
③数量关系:BM+CN=BC•sinα.
证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BDsinα,从而有BM+CN=BC•sinα.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.
25、(1)y=60x;(2)300
【解析】
(1)由题图可知,甲组的y是x的正比例函数.
设甲组加工的零件数量y与时间x的函数关系式为y=kx.
根据题意,得6k=360,
解得k=60.
所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.
(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.
所以,解得a=300.
26、(1)详见解析;(2);
【解析】
(1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论;
(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论.
【详解】
:(1)连接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等边三角形,
∴OB=BC=,
∴阴影部分的面积=,
【点睛】
本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键.
27、(1)a的值为200,b 的值为30;(2)甲追上乙时,与学校的距离4100米;(3)1.1或17.1.
【解析】
(1)根据速度=路程÷时间,即可解决问题.(2)首先求出甲返回用的时间,再列出方程即可解决问题.(3)分两种情形列出方程即可解决问题.
【详解】
解:(1)由题意a==200,b==30,
∴a=200,b=30.
(2) +4.1=7.1,
设t分钟甲追上乙,由题意,300(t−7.1)=200t,
解得t=22.1,
22.1×200=4100,
∴甲追上乙时,距学校的路程4100米.
(3)两人相距100米是的时间为t分钟.
由题意:1.1×200(t−4.1)+200(t−4.1)=100,解得t=1.1分钟,
或300(t−7.1)+100=200t,解得t=17.1分钟,
故答案为1.1分钟或17.1分钟.
点睛:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析即图象的变化趋势得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
江西省抚州市金溪县2021-2022学年中考数学考前最后一卷含解析: 这是一份江西省抚州市金溪县2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了-2的绝对值是,下列计算结果是x5的为等内容,欢迎下载使用。
江西省丰城市2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份江西省丰城市2021-2022学年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2022年江西省吉水县中考数学考前最后一卷含解析: 这是一份2022年江西省吉水县中考数学考前最后一卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列算式中,结果等于x6的是等内容,欢迎下载使用。