终身会员
搜索
    上传资料 赚现金

    2022年江苏省无锡市崇安区中考数学模试卷含解析

    立即下载
    加入资料篮
    2022年江苏省无锡市崇安区中考数学模试卷含解析第1页
    2022年江苏省无锡市崇安区中考数学模试卷含解析第2页
    2022年江苏省无锡市崇安区中考数学模试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省无锡市崇安区中考数学模试卷含解析

    展开

    这是一份2022年江苏省无锡市崇安区中考数学模试卷含解析,共20页。试卷主要包含了下列命题是假命题的是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列说法:
    四边相等的四边形一定是菱形
    顺次连接矩形各边中点形成的四边形一定是正方形
    对角线相等的四边形一定是矩形
    经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
    其中正确的有  个.
    A.4 B.3 C.2 D.1
    2.﹣18的倒数是(  )
    A.18 B.﹣18 C.- D.
    3.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(  )

    A. B. C. D.
    4.下列命题是假命题的是(  )
    A.有一个外角是120°的等腰三角形是等边三角形
    B.等边三角形有3条对称轴
    C.有两边和一角对应相等的两个三角形全等
    D.有一边对应相等的两个等边三角形全等
    5.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )

    A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD
    6.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为(  )

    A.32° B.42° C.46° D.48°
    7.不等式组的解集在数轴上表示为(  )
    A. B. C. D.
    8.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
    A.能中奖一次 B.能中奖两次
    C.至少能中奖一次 D.中奖次数不能确定
    9.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )

    A.70° B.65° C.60° D.55°
    10.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
    A.0 B.2.5 C.3 D.5
    11.若正六边形的半径长为4,则它的边长等于( )
    A.4 B.2 C. D.
    12.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为( )

    A. B. C.3 D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a的代数式表示).
    14.如图,矩形ABCD中,如果以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,那么 的值等于________.(结果保留两位小数)

    15.如图,已知直线y=x+4与双曲线y=(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_____.

    16.因式分解:4x2y﹣9y3=_____.
    17.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m的值为___________.
    18.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.
    (1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?
    (2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.
    20.(6分)计算:(﹣1)4﹣2tan60°+ .
    21.(6分)如图,一次函数y=﹣x+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒.
    (1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标;
    (2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)

    22.(8分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:
    (1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;
    (2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;
    (3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.
    23.(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
    24.(10分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?
    25.(10分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.

    请根据以上的信息,回答下列问题:
    (1)补全扇形统计图和条形统计图;
    (2)所抽查学生参加社会实践活动天数的众数是   (选填:A、B、C、D、E);
    (3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
    26.(12分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
    (1)若,DC=4,求AB的长;
    (2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.

    27.(12分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:
    ①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    ∵四边相等的四边形一定是菱形,∴①正确;
    ∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
    ∵对角线相等的平行四边形才是矩形,∴③错误;
    ∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
    其中正确的有2个,故选C.
    考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
    2、C
    【解析】
    根据乘积为1的两个数互为倒数,可得一个数的倒数.
    【详解】
    ∵-18=1,
    ∴﹣18的倒数是,
    故选C.
    【点睛】
    本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
    3、C
    【解析】
    列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
    【详解】
    解:列表得:

    A
    B
    C
    D
    E
    A
    AA
    BA
    CA
    DA
    EA
    B
    AB
    BB
    CB
    DB
    EB
    C
    AC
    BC
    CC
    DC
    EC
    D
    AD
    BD
    CD
    DD
    ED
    E
    AE
    BE
    CE
    DE
    EE
    ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
    ∴恰好选择从同一个口进出的概率为=,
    故选C.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    4、C
    【解析】
    解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
    B. 等边三角形有3条对称轴,故B选项正确;
    C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
    D.利用SSS.可以判定三角形全等.故D选项正确;
    故选C.
    5、D
    【解析】
    解:∵∠ADC=∠ADB,∠ACD=∠DAB,
    ∴△ADC∽△BDA,故A选项正确;
    ∵AD=DE,
    ∴ ,
    ∴∠DAE=∠B,
    ∴△ADC∽△BDA,∴故B选项正确;
    ∵AD2=BD•CD,
    ∴AD:BD=CD:AD,
    ∴△ADC∽△BDA,故C选项正确;
    ∵CD•AB=AC•BD,
    ∴CD:AC=BD:AB,
    但∠ACD=∠ABD不是对应夹角,故D选项错误,
    故选:D.
    考点:1.圆周角定理2.相似三角形的判定
    6、D
    【解析】
    根据平行线的性质与对顶角的性质求解即可.
    【详解】
    ∵a∥b,
    ∴∠BCA=∠2,
    ∵∠BAC=100°,∠2=32°
    ∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
    ∴∠1=∠CBA=48°.
    故答案选D.
    【点睛】
    本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
    7、A
    【解析】
    根据不等式组的解集在数轴上表示的方法即可解答.
    【详解】
    ∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.
    故选A.
    【点睛】
    本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画, “≤”、“≥”要用实心圆点表示;“<”、“>”要用空心圆点表示.
    8、D
    【解析】
    由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
    【详解】
    解:根据随机事件的定义判定,中奖次数不能确定
    故选D.
    【点睛】
    解答此题要明确概率和事件的关系:
    ,为不可能事件;
    为必然事件;
    为随机事件.
    9、B
    【解析】
    根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
    【详解】
    ∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
    ∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
    ∴∠AA′C=45°,
    ∵∠1=20°,
    ∴∠B′A′C=45°-20°=25°,
    ∴∠A′B′C=90°-25°=65°,
    ∴∠B=65°.
    故选B.
    【点睛】
    本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
    10、C
    【解析】
    解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
    (1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
    (2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
    (1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
    (4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
    (5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
    综上,可得:a=0、2.5或5,∴a不可能是1.
    故选C.
    【点睛】
    本题考查中位数;算术平均数.
    11、A
    【解析】
    试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.
    考点:正多边形和圆.
    12、A
    【解析】
    ∵∠AED=∠B,∠A=∠A
    ∴△ADE∽△ACB
    ∴,
    ∵DE=6,AB=10,AE=8,
    ∴,
    解得BC=.
    故选A.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(50-3a).
    【解析】
    试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,
    ∴根据题意,应找回(50-3a)元.
    考点:列代数式.
    14、3.1
    【解析】
    分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.
    详解:∵以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴=π≈3.1.
    故答案为3.1.
    点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.
    15、-3
    【解析】

    设A(a, a+4),B(c, c+4),则
    解得: x+4=,即x2+4x−k=0,
    ∵直线y=x+4与双曲线y=相交于A、B两点,
    ∴a+c=−4,ac=-k,
    ∴(c−a)2=(c+a)2−4ac=16+4k,
    ∵AB=,
    ∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=()2,
    2 (c−a)2=8,
    (c−a)2=4,
    ∴16+4k =4,
    解得:k=−3,
    故答案为−3.
    点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.
    16、y(2x+3y)(2x-3y)
    【解析】
    直接提取公因式y,再利用平方差公式分解因式即可.
    【详解】
    4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    17、3
    【解析】
    设过点A(2,0)和点B(0,2)的直线的解析式为:,
    则 ,解得: ,
    ∴直线AB的解析式为:,
    ∵点C(-1,m)在直线AB上,
    ∴,即.
    故答案为3.
    点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.
    18、1
    【解析】
    底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
    【详解】
    试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
    ②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.
    故填1.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1),(2)
    【解析】
    解:(1)画树状图得:

    ∵总共有9种等可能情况,每人获胜的情形都是3种,
    ∴两人获胜的概率都是.
    (2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为.任选其中一人的情形可画树状图得:

    ∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,
    ∴两局游戏能确定赢家的概率为:.
    (1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案.
    (2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案.
    20、1
    【解析】
    首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.
    解:原式==1.
    “点睛”此题主要考查了实数运算,正确化简各数是解题关键.
    ,
    21、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16
    【解析】
    (1)先求出△OPA的面积为6时BP的长,再求出点P的坐标;
    (2)分别讨论AO=AP,AP=OP和AO=OP三种情况.
    【详解】
    (1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,
    ∴A(0,6),B(8,0),
    ∴OA=6,OB=8,∴AB=10,
    ∴AB边上的高为6×8÷10=,
    ∵P点的运动时间为t,∴BP=t,则AP=,
    当△AOP面积为6时,则有AP×=6,即×=6,解得t=7.5或12.5,
    过P作PE⊥x轴,PF⊥y轴,垂足分别为E、F,
    则PE==4.5或7.5,BE==6或10,
    则点P坐标为(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);
    (2)由题意可知BP=t,AP=,
    当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.
    ①当AP=AO时,则有=6,解得t=4或16;
    ②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,
    则M为AO中点,故P为AB中点,此时t=5;

    ③当AO=OP时,过O作ON⊥AB,垂足为N,过P作PH⊥OB,垂足为H,如图2,
    则AN=AP=(10-t),
    ∵PH∥AO,∴△AOB∽△PHB,
    ∴=,即=,∴PH=t,
    又∠OAN+∠AON=∠OAN+PBH=90°,
    ∴∠AON=∠PBH,又∠ANO=∠PHB,
    ∴△ANO∽△PHB,
    ∴=,即=,解得t=;
    综上可知当t的值为、4、5和16时,△AOP为等腰三角形.
    22、(1);(2);(3)一.
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
    (3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.
    【详解】
    解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
    故答案为;
    (2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
    画树状图为:(用Z表示正确选项,C表示错误选项)

    共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
    所以小敏顺利通关的概率=;
    (3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)

    共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
    由于>,
    所以建议小敏在答第一道题时使用“求助”.
    【点睛】
    本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.
    23、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
    【解析】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
    【详解】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
    根据题意得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x=×40=60,
    答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
    (2)设安排甲队工作m天,则安排乙队工作天,
    根据题意得:7m+5×≤145,
    解得:m≥10,
    答:至少安排甲队工作10天.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
    24、1千米/时
    【解析】
    设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.
    【详解】
    设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,
    根据题意得:6(20﹣x)=1(20+x),
    解得:x=1.
    答:水流的速度是1千米/时.
    【点睛】
    本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.
    25、(1)见解析;(2)A;(3)800人.
    【解析】
    (1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;
    (2)根据众数的定义即可求解;
    (3)利用总人数2000乘以对应的百分比即可求解.
    【详解】
    解:(1)∵被调查的学生人数为24÷40%=60人,
    ∴D类别人数为60﹣(24+12+15+3)=6人,
    则D类别的百分比为×100%=10%,
    补全图形如下:

    (2)所抽查学生参加社会实践活动天数的众数是A,
    故答案为:A;
    (3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    26、(1);(2)30°
    【解析】
    (1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
    (2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
    【详解】
    解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,
    ∴∠DEC=90°,AE=EC,
    ∵∠ABC=90°,∠C=∠C,
    ∴∠A=∠CDE,△ABC∽△DEC,
    ∴sin∠CDE=,AB:AC=DE:DC,
    ∵DC=4,
    ∴ED=3,
    ∴DE=,
    ∴AC=6,
    ∴AB:6=:4,
    ∴AB=;
    (2)连接OE,
    ∵∠DEC=90°,
    ∴∠EDC+∠C=90°,
    ∵BE是⊙O的切线,
    ∴∠BEO=90°,
    ∴∠EOB+∠EBC=90°,
    ∵E是AC的中点,∠ABC=90°,
    ∴BE=EC,
    ∴∠EBC=∠C,
    ∴∠EOB=∠EDC,
    又∵OE=OD,
    ∴△DOE是等边三角形,
    ∴∠EDC=60°,
    ∴∠C=30°.

    【点睛】
    考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
    27、 (1) 每次下调10% (2) 第一种方案更优惠.
    【解析】
    (1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
    (2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.
    【详解】
    解:(1)设平均每次下调的百分率为x,根据题意得
    5000×(1-x)2=4050
       解得x=10%或x=1.9(舍去)
    答:平均每次下调10%.
    (2)9.8折=98%,
    100×4050×98%=396900(元)
    100×4050-100×1.5×12×2=401400(元),
    396900<401400,所以第一种方案更优惠.
    答:第一种方案更优惠.
    【点睛】
    本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.

    相关试卷

    无锡市崇安区2022年中考押题数学预测卷含解析:

    这是一份无锡市崇安区2022年中考押题数学预测卷含解析

    江苏省无锡市崇安区2021-2022学年中考数学模拟试题含解析:

    这是一份江苏省无锡市崇安区2021-2022学年中考数学模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,我市某一周的最高气温统计如下表,tan45°的值等于,下列判断正确的是等内容,欢迎下载使用。

    2022年江苏省无锡市崇安区中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年江苏省无锡市崇安区中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了答题时请按要求用笔,若a与5互为倒数,则a=,已知实数a、b满足,则,对于反比例函数y=等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map