![2021-2022学年无锡市崇安区中考数学模拟试题含解析第1页](http://m.enxinlong.com/img-preview/2/3/13313839/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年无锡市崇安区中考数学模拟试题含解析第2页](http://m.enxinlong.com/img-preview/2/3/13313839/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年无锡市崇安区中考数学模拟试题含解析第3页](http://m.enxinlong.com/img-preview/2/3/13313839/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年无锡市崇安区中考数学模拟试题含解析
展开
这是一份2021-2022学年无锡市崇安区中考数学模拟试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,互为相反数的是,的相反数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图所示的图形,是下面哪个正方体的展开图( )
A. B. C. D.
2.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )
A.10 B.14 C.20 D.22
3.下列说法正确的是( )
A.“买一张电影票,座位号为偶数”是必然事件
B.若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则甲组数据比乙组数据稳定
C.一组数据2,4,5,5,3,6的众数是5
D.一组数据2,4,5,5,3,6的平均数是5
4.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )
A.16 B.14 C.12 D.6
5.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是
A. B. C. D.
6.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1
7.如图,已知点 P 是双曲线 y=上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ,则经过点 Q 的双曲线的表达式为( )
A.y= B.y=﹣ C.y= D.y=﹣
8.下列各式中,互为相反数的是( )
A.和 B.和 C.和 D.和
9.的相反数是 ( )
A.6 B.-6 C. D.
10.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为( )
A.(3 ,1) B.(3 ,2) C.(2 ,3) D.(1 ,3)
二、填空题(共7小题,每小题3分,满分21分)
11.某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价.设银杏树的单价为x元,可列方程为______.
12.观察下列一组数,,,,,…探究规律,第n个数是_____.
13.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.
14.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.
15.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.
16.写出一个经过点(1,2)的函数表达式_____.
17.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线(>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是 __________.
三、解答题(共7小题,满分69分)
18.(10分)的除以20与18的差,商是多少?
19.(5分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.
(1)证明:DE是⊙O的切线;
(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,
(3)若⊙O的半径r=5,sinA=,求线段EF的长.
20.(8分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
(1)求与的函数关系式,并写出的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
21.(10分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
(1)请直接写出⊙M的直径,并求证BD平分∠ABO;
(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.
22.(10分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.
如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.
23.(12分)已知△ABC内接于⊙O,AD平分∠BAC.
(1)如图1,求证:;
(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;
(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.
24.(14分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
【详解】
A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
故选D.
【点睛】
本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
2、B
【解析】
直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,DC=AB=6,
∵AC+BD=16,
∴AO+BO=8,
∴△ABO的周长是:1.
故选B.
【点睛】
平行四边形的性质掌握要熟练,找到等值代换即可求解.
3、C
【解析】
根据确定性事件、方差、众数以及平均数的定义进行解答即可.
【详解】
解:A、“买一张电影票,座位号为偶数”是随机事件,此选项错误;
B、若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则乙组数据比甲组数据稳定,此选项错误;
C、一组数据2,4,5,5,3,6的众数是5,此选项正确;
D、一组数据2,4,5,5,3,6的平均数是,此选项错误;
故选:C.
【点睛】
本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、C
【解析】
先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
【详解】
∵AB=AC=15,AD平分∠BAC,
∴D为BC中点,
∵点E为AC的中点,
∴DE为△ABC中位线,
∴DE=AB,
∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
∴AB+AC+BC=42,
∴BC=42-15-15=12,
故选C.
【点睛】
此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
5、D
【解析】
由圆锥的俯视图可快速得出答案.
【详解】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.
【点睛】
本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.
6、B
【解析】
∵函数y=-2x2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B.
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
7、D
【解析】
过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.
【详解】
过P,Q分别作PM⊥x轴,QN⊥x轴,
∵∠POQ=90°,
∴∠QON+∠POM=90°,
∵∠QON+∠OQN=90°,
∴∠POM=∠OQN,
由旋转可得OP=OQ,
在△QON和△OPM中,
,
∴△QON≌△OPM(AAS),
∴ON=PM,QN=OM,
设P(a,b),则有Q(-b,a),
由点P在y=上,得到ab=3,可得-ab=-3,
则点Q在y=-上.
故选D.
【点睛】
此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.
8、A
【解析】
根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
【详解】
解:A. =9,=-9,故和互为相反数,故正确;
B. =9,=9,故和不是互为相反数,故错误;
C. =-8,=-8,故和不是互为相反数,故错误;
D. =8,=8故和不是互为相反数,故错误.
故选A.
【点睛】
本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
9、D
【解析】
根据相反数的定义解答即可.
【详解】
根据相反数的定义有:的相反数是.
故选D.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
10、D
【解析】
解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.
【详解】
由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据银杏树的单价为x元,则玉兰树的单价为1.5x元,根据“某小区购买了银杏树和玉兰树共1棵”列出方程即可.
【详解】
设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意,得:
1.
故答案为:1.
【点睛】
本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
12、
【解析】
根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n个数分子的规律是n,分母的规律是2n+1,进而得出这一组数的第n个数的值.
【详解】
解:因为分子的规律是连续的正整数,分母的规律是2n+1,
所以第n个数就应该是:,
故答案为.
【点睛】
此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n表示出来.
13、或
【解析】
过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.
【详解】
如图所示,过点A作AG⊥BC,垂足为G,
∵AB=AC=6,∠BAC=90°,
∴BC==12,
∵AB=AC,AG⊥BC,
∴AG=BG=CG=6,
设BD=x,则EC=12-DE-BD=12-5-x=7-x,
由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,
∴DF=x,EF=7-x,
在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,
解得:x=3或x=4,
当BD=3时,DG=3,AD=,
当BD=4时,DG=2,AD=,
∴AD的长为或,
故答案为:或.
【点睛】
本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.
14、
【解析】
试题解析:∵一个布袋里装有2个红球和5个白球,
∴摸出一个球摸到红球的概率为:.
考点:概率公式.
15、2
【解析】
试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.
在直角△OCE中,
则AE=OA−OE=5−3=2.
故答案为2.
16、y=x+1(答案不唯一)
【解析】
本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.
【详解】
解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,…答案不唯一.
故答案可以是:y=x+1(答案不唯一).
【点睛】
本题考查函数,解题的关键是清楚几种函数的一般式.
17、1
【解析】
根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算.
【详解】
设E点坐标为(t,),
∵AE:EB=1:3,
∴B点坐标为(4t,),
∴矩形OABC的面积=4t•=1.
故答案是:1.
【点睛】
考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
三、解答题(共7小题,满分69分)
18、
【解析】
根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.
【详解】
解:×÷(20﹣18)
【点睛】
考查有理数的混合运算,列出式子是解题的关键.
19、(1)见解析 (2)8(3)
【解析】
分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;
(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.
(3)先证Rt△DFB∽Rt△DCB得,据此求得BF的长,再证△EFB∽△EDO得,据此求得EB的长,继而由勾股定理可得答案.
详解:(1)如图,连接BD、OD,
∵AB是⊙O的直径,
∴∠BDA=90°,
∵BA=BC,
∴AD=CD,
又∵AO=OB,
∴OD∥BC,
∵DE⊥BC,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)设⊙O的半径为x,则OB=OD=x,
在Rt△ODE中,OE=4+x,∠E=30°,
∴,
解得:x=4,
∴DE=4,S△ODE=×4×4=8,
S扇形ODB=,
则S阴影=S△ODE-S扇形ODB=8-;
(3)在Rt△ABD中,BD=ABsinA=10×=2,
∵DE⊥BC,
∴Rt△DFB∽Rt△DCB,
∴,即,
∴BF=2,
∵OD∥BC,
∴△EFB∽△EDO,
∴,即,
∴EB=,
∴EF=.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.
20、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.
【解析】
【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;
(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;
(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.
【详解】(1)设 ,将点(10,200)、(15,150)分别代入,
则,解得 ,
∴,
∵蜜柚销售不会亏本,∴,
又,∴ ,∴,
∴ ;
(2) 设利润为元,
则
=
=,
∴ 当 时, 最大为1210,
∴ 定价为19元时,利润最大,最大利润是1210元;
(3) 当 时,,
110×40=4400<4800,
∴不能销售完这批蜜柚.
【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.
21、(1)详见解析;(2)(,1).
【解析】
(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
【详解】
(1)∵点A(,0)与点B(0,﹣1),
∴OA=,OB=1,
∴AB==2,
∵AB是⊙M的直径,
∴⊙M的直径为2,
∵∠COD=∠CBO,∠COD=∠CBA,
∴∠CBO=∠CBA,
即BD平分∠ABO;
(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
∵在Rt△ACB中,tan∠OAB=,
∴∠OAB=30°,
∵∠ABO=90°,
∴∠OBA=60°,
∴∠ABC=∠OBC==30°,
∴OC=OB•tan30°=1×,
∴AC=OA﹣OC=,
∴∠ACE=∠ABC+∠OAB=60°,
∴∠EAC=60°,
∴△ACE是等边三角形,
∴AE=AC=,
∴AF=AE=,EF==1,
∴OF=OA﹣AF=,
∴点E的坐标为(,1).
【点睛】
此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
22、(1)见解析;(2);(1)DE的长分别为或1.
【解析】
(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;
(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得MN=;
(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.
【详解】
解:(1)∵AE是AM和AN的比例中项
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE;
(2)∵AC与NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=;
(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
当△AEC与以点E、M、N为顶点所组成的三角形相似时
①∠ENM=∠EAC,如图2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如图1,
过点E作EH⊥AC,垂足为点H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
设DE=1x,则HE=1x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+1x=8,
解得x=1,
∴DE=1x=1,
综上所述,DE的长分别为或1.
【点睛】
本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.
23、(1)证明见解析;(1)证明见解析;(3)1.
【解析】
(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.
(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;
(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.
【详解】
(1)如图1,连接OB、OC、OD,
∵∠BAD和∠BOD是所对的圆周角和圆心角,
∠CAD和∠COD是所对的圆周角和圆心角,
∴∠BOD=1∠BAD,∠COD=1∠CAD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴=;
(1)如图1,过点O作OM⊥AD于点M,
∴∠OMA=90°,AM=DM,
∵BE⊥AD于点E,CF⊥AD于点F,
∴∠CFM=90°,∠MEB=90°,
∴∠OMA=∠MEB,∠CFM=∠OMA,
∴OM∥BE,OM∥CF,
∴BE∥OM∥CF,
∴,
∵OB=OC,
∴=1,
∴FM=EM,
∴AM﹣FM=DM﹣EM,
∴DE=AF;
(3)延长EO交AB于点H,连接CG,连接OA.
∵BC为⊙O直径,
∴∠BAC=90°,∠G=90°,
∴∠G=∠CFE=∠FEG=90°,
∴四边形CFEG是矩形,
∴EG=CF,
∵AD平分∠BAC,
∴∠BAF=∠CAF=×90°=45°,
∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,
∠ACF=180°﹣∠CAF﹣∠AFC=45°,
∴∠BAF=∠ABE,∠ACF=∠CAF,
∴AE=BE,AF=CF,
在Rt△ACF中,∠AFC=90°,
∴sin∠CAF=,即sin45°=,
∴CF=1×=,
∴EG=,
∴EF=1EG=1,
∴AE=3,
在Rt△AEB中,∠AEB=90°,
∴AB==6,
∵AE=BE,OA=OB,
∴EH垂直平分AB,
∴BH=EH=3,
∵∠OHB=∠BAC,∠ABC=∠ABC
∴△HBO∽△ABC,
∴,
∴OH=1,
∴OE=EH﹣OH=3﹣1=1.
【点睛】
本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.
24、(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;
(2)直接利用位似图形的性质得出对应点位置,进而得出答案;
试题解析:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求;
考点:作图-位似变换;作图-轴对称变换
相关试卷
这是一份无锡市崇安区2022年中考押题数学预测卷含解析
这是一份江苏省无锡市崇安区2021-2022学年中考数学模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,我市某一周的最高气温统计如下表,tan45°的值等于,下列判断正确的是等内容,欢迎下载使用。
这是一份2022年江苏省无锡市崇安区中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了答题时请按要求用笔,若a与5互为倒数,则a=,已知实数a、b满足,则,对于反比例函数y=等内容,欢迎下载使用。