年终活动
搜索
    上传资料 赚现金

    2022年江苏省泰兴市城黄北区教研中学心中考数学押题试卷含解析

    2022年江苏省泰兴市城黄北区教研中学心中考数学押题试卷含解析第1页
    2022年江苏省泰兴市城黄北区教研中学心中考数学押题试卷含解析第2页
    2022年江苏省泰兴市城黄北区教研中学心中考数学押题试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省泰兴市城黄北区教研中学心中考数学押题试卷含解析

    展开

    这是一份2022年江苏省泰兴市城黄北区教研中学心中考数学押题试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如图等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
    A. B.
    C. D.
    2.下列判断错误的是( )
    A.对角线相等的四边形是矩形
    B.对角线相互垂直平分的四边形是菱形
    C.对角线相互垂直且相等的平行四边形是正方形
    D.对角线相互平分的四边形是平行四边形
    3.在△ABC中,AB=AC=13,BC=24,则tanB等于( )
    A. B. C. D.
    4.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )

    A. B. C. D.
    5.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )
    A. B. C. D.
    6.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为

    A.80° B.50° C.30° D.20°
    7.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为(  )

    A.x>2 B.0<x<4
    C.﹣1<x<4 D.x<﹣1 或 x>4
    8.如图: 在中,平分,平分,且交于,若,则等于( )

    A.75 B.100 C.120 D.125
    9.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
    A.60° B.120° C.60°或120° D.30°或120°
    10.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )

    A.4.5cm B.5.5cm C.6.5cm D.7cm
    二、填空题(共7小题,每小题3分,满分21分)
    11.化简的结果为_____.
    12.如图,矩形ABCD中,AD=5,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是___________.

    13.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)

    14.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.

    15.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.
    16.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是 .
    17.已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_____________.

    三、解答题(共7小题,满分69分)
    18.(10分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)
    大江东去浪淘尽,千古风流数人物;
    而立之年督东吴,早逝英年两位数;
    十位恰小个位三,个位平方与寿符;
    哪位学子算得快,多少年华属周瑜?
    19.(5分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.

    20.(8分)综合与探究
    如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:
    (1)求点A的坐标与直线l的表达式;
    (2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;
    ②求点M运动的过程中线段CD长度的最小值;
    (3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    21.(10分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元
    (1)求A、B型商品的进价;
    (2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
    (3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.
    22.(10分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.
    23.(12分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:
    ①与y轴的交点不变;②对称轴不变;③一定经过两个定点;
    请判断以上结论是否正确,并说明理由.
    24.(14分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:
    地铁站
    A
    B
    C
    D
    E
    X(千米)
    8
    9
    10
    11.5
    13
    (分钟)
    18
    20
    22
    25
    28
    (1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
    解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
    ∴△≥0,
    ∴4﹣4(k+1)≥0,
    解得k≤0,
    ∵x1+x2=﹣2,x1•x2=k+1,
    ∴﹣2﹣(k+1)<﹣1,
    解得k>﹣2,
    不等式组的解集为﹣2<k≤0,
    在数轴上表示为:

    故选D.
    点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
    2、A
    【解析】
    利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
    【详解】
    解:、对角线相等的四边形是矩形,错误;
    、对角线相互垂直平分的四边形是菱形,正确;
    、对角线相互垂直且相等的平行四边形是正方形,正确;
    、对角线相互平分的四边形是平行四边形,正确;
    故选:.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
    3、B
    【解析】
    如图,等腰△ABC中,AB=AC=13,BC=24,

    过A作AD⊥BC于D,则BD=12,
    在Rt△ABD中,AB=13,BD=12,则,
    AD=,
    故tanB=.
    故选B.
    【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.
    4、A
    【解析】
    先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;
    【详解】
    解:∵∠C=90°,AC=4,BC=3,
    ∴AB=5,
    ∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
    ∴AE=AC=4,DE=BC=3,
    ∴BE=AB-AE=5-4=1,
    在Rt△DBE中,BD=,
    故选A.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    5、C
    【解析】
    根据中心对称图形的概念进行分析.
    【详解】
    A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项正确;
    D、不是中心对称图形,故此选项错误;
    故选:C.
    【点睛】
    考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    6、D
    【解析】
    试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.

    考点:平行线的性质;三角形的外角的性质.
    7、C
    【解析】
    看两函数交点坐标之间的图象所对应的自变量的取值即可.
    【详解】
    ∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
    ∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
    故选C.
    【点睛】
    本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
    8、B
    【解析】
    根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
    【详解】
    解:∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
    ∴△EFC为直角三角形,
    又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
    ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
    ∴CM=EM=MF=5,EF=10,
    由勾股定理可知CE2+CF2=EF2=1.
    故选:B.
    【点睛】
    本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
    9、C
    【解析】
    根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
    【详解】
    如图所示,

    ∵OD⊥AB,
    ∴D为AB的中点,即AD=BD=,
    在Rt△AOD中,OA=5,AD=,
    ∴sin∠AOD=,
    又∵∠AOD为锐角,
    ∴∠AOD=60°,
    ∴∠AOB=120°,
    ∴∠ACB=∠AOB=60°,
    又∵圆内接四边形AEBC对角互补,
    ∴∠AEB=120°,
    则此弦所对的圆周角为60°或120°.
    故选C.
    【点睛】
    此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
    10、A
    【解析】
    试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
    故选A.
    考点:轴对称图形的性质

    二、填空题(共7小题,每小题3分,满分21分)
    11、+1
    【解析】
    利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.
    【详解】
    原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.
    故答案为:+1.
    【点睛】
    本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    12、5
    【解析】
    作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题.
    【详解】
    解:作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q.

    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,
    ∴DQ⊥AE,∵DE=AD,
    ∴QE=QA,
    ∴QA+QP=QE+QP=EP,
    ∴此时QA+QP最短(垂线段最短),
    ∵∠CAB=30°,
    ∴∠DAC=60°,
    在Rt△APE中,∵∠APE=90°,AE=2AD=10,
    ∴EP=AE•sin60°=10×=5.
    故答案为5.
    【点睛】
    本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型.
    13、=.
    【解析】
    黄金分割点,二次根式化简.
    【详解】
    设AB=1,由P是线段AB的黄金分割点,且PA>PB,
    根据黄金分割点的,AP=,BP=.
    ∴.∴S1=S1.
    14、1
    【解析】
    【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.
    【详解】如图,过点A作AD⊥x轴,垂足为D,
    ∵tan∠AOC==,∴设点A的坐标为(1a,a),
    ∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,
    ∴a=1a﹣2,得a=1,
    ∴1=,得k=1,
    故答案为:1.

    【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    15、 (x﹣1)(x﹣2)
    【解析】
    根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.
    【详解】
    解:已知方程的两根为:x1=1,x2=2,可得:
    (x﹣1)(x﹣2)=0,
    ∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).
    【点睛】
    一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)
    16、.
    【解析】
    试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.
    由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,
    ∴∠EFC+∠AFB=90°,∵∠B=90°,
    ∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,
    ∴cos∠EFC=,故答案为:.
    考点:轴对称的性质,矩形的性质,余弦的概念.
    17、
    【解析】
    分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.
    详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),
    ∴=1,即b2-4ac=-20a,
    ∵ax2+bx+c=k有两个不相等的实数根,
    ∴方程ax2+bx+c-k=0的判别式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0
    ∵抛物线开口向下
    ∴a<0
    ∴1-k>0
    ∴k<1.
    故答案为k<1.
    点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.

    三、解答题(共7小题,满分69分)
    18、周瑜去世的年龄为16岁.
    【解析】
    设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.
    【详解】
    设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;
    10(x﹣1)+x=x2,
    解得:x1=5,x2=6
    当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;
    当x=6时,周瑜年龄为16岁,完全符合题意.
    答:周瑜去世的年龄为16岁.
    【点睛】
    本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.
    19、这个圆形截面的半径为10cm.
    【解析】
    分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.
    解答:解:如图,OE⊥AB交AB于点D,

    则DE=4,AB=16,AD=8,
    设半径为R,
    ∴OD=OE-DE=R-4,
    由勾股定理得,OA2=AD2+OD2,
    即R2=82+(R-4)2,
    解得,R=10cm.
    20、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值为;(3)P(2,﹣),理由见解析.
    【解析】
    (1)当y=0时,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;
    (2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;
    (3)分当点M在AO上运动时,即0<t<3时,当点M在OB上运动时,即3≤t≤4时,进行讨论可求P点坐标.
    【详解】
    (1)当y=0时,﹣=0,解得x1=1,x2=﹣3,
    ∵点A在点B的左侧,
    ∴A(﹣3,0),B(1,0),
    由解析式得C(0,),
    设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk﹣,
    故直线l的表达式为y=﹣x+;
    (2)当点M在AO上运动时,如图:

    由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,
    ∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,
    ∴∠MCO=∠DMN,
    在△MCO与△DMN中,

    ∴△MCO≌△DMN,
    ∴MN=OC=,DN=OM=3﹣t,
    ∴D(t﹣3+,t﹣3);
    同理,当点M在OB上运动时,如图,

    OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,
    ∴D(t﹣3+,t﹣3).
    综上得,D(t﹣3+,t﹣3).
    将D点坐标代入直线解析式得t=6﹣2,
    线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,
    ∵M在AB上运动,
    ∴当CM⊥AB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;
    (3)当点M在AO上运动时,如图,即0<t<3时,

    ∵tan∠CBO==,
    ∴∠CBO=60°,
    ∵△BDP是等边三角形,
    ∴∠DBP=∠BDP=60°,BD=BP,
    ∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,
    =,解得t=3﹣,
    经检验t=3﹣是此方程的解,
    过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,
    ∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);
    同理,当点M在OB上运动时,即3≤t≤4时,
    ∵△BDP是等边三角形,
    ∴∠DBP=∠BDP=60°,BD=BP,
    ∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,
    =,解得t=3﹣,
    经检验t=3﹣是此方程的解,t=3﹣(不符合题意,舍).
    故P(2,﹣).
    【点睛】
    考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.
    21、(1)80,100;(2)100件,22000元;(3)答案见解析.
    【解析】
    (1)先设A型商品的进价为a元/件,求得B型商品的进价为(a+20)元/件,由题意得等式 ,解得a=80,再检验a是否符合条件,得到答案.
    (2)先设购机A型商品x件,则由题意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再设获得的利润为w元,由题意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,当x=100时代入w=﹣60x+28000,从而得答案.
    (3)设获得的利润为w元,由题意可得w(a﹣60)x+28000,分类讨论:当50<a<60时,当a=60时,当60<a<70时,各个阶段的利润,得出最大值.
    【详解】
    解:(1)设A型商品的进价为a元/件,则B型商品的进价为(a+20)元/件,

    解得,a=80,
    经检验,a=80是原分式方程的解,
    ∴a+20=100,
    答:A、B型商品的进价分别为80元/件、100元/件;
    (2)设购机A型商品x件,
    80x+100(200﹣x)≤18000,
    解得,x≥100,
    设获得的利润为w元,
    w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,
    ∴当x=100时,w取得最大值,此时w=22000,
    答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;
    (3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,
    ∵50<a<70,
    ∴当50<a<60时,a﹣60<0,y随x的增大而减小,则甲100件,乙100件时利润最大;
    当a=60时,w=28000,此时甲乙只要是满足条件的整数即可;
    当60<a<70时,a﹣60>0,y随x的增大而增大,则甲120件,乙80件时利润最大.
    【点睛】
    本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.
    22、 (1)见解析;(2).
    【解析】
    (1)画树状图列举出所有情况;
    (2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.
    【详解】
    解:(1)根据题意,可以画出如下的树形图:

    从树形图可以看出,两次摸球出现的所有可能结果共有6种.
    (2)由树状图知摸出的两个小球号码之和等于4的有2种结果,
    ∴摸出的两个小球号码之和等于4的概率为=.
    【点睛】
    本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.
    23、(1)(2)1(3)①②③
    【解析】
    (1)由抛物线与x轴只有一个交点,可知△=0;
    (2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;
    (3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.
    【详解】
    (1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,
    ∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,
    ∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,
    解得:k1=0,k2=,
    k≠0,
    ∴k=;
    (2)∵AB=2,抛物线对称轴为x=2,
    ∴A、B点坐标为(1,0),(3,0),
    将(1,0)代入解析式,可得k=1,
    (3)①∵当x=0时,y=3,
    ∴二次函数图象与y轴的交点为(0,3),①正确;
    ②∵抛物线的对称轴为x=2,
    ∴抛物线的对称轴不变,②正确;
    ③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,
    令k的系数为0,即x2﹣4x=0,
    解得:x1=0,x2=4,
    ∴抛物线一定经过两个定点(0,3)和(4,3),③正确.
    综上可知:正确的结论有①②③.
    【点睛】
    本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.
    24、 (1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.
    【解析】
    (1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.
    【详解】
    (1)设y1=kx+b,将(8,18),(9,20),代入
    y1=kx+b,得:
    解得
    所以y1关于x的函数解析式为y1=2x+2.
    (2)设李华从文化宫回到家所需的时间为y,则
    y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.
    所以当x=9时,y取得最小值,最小值为39.5,
    答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
    【点睛】
    本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.

    相关试卷

    江苏省泰兴市城黄北区教研中学心2023-2024学年数学九上期末调研模拟试题含答案:

    这是一份江苏省泰兴市城黄北区教研中学心2023-2024学年数学九上期末调研模拟试题含答案,共9页。试卷主要包含了在平面直角坐标系中,已知点A,sin 30°的值为等内容,欢迎下载使用。

    江苏省泰兴市城黄北区教研中学心2023-2024学年数学九上期末质量检测试题含答案:

    这是一份江苏省泰兴市城黄北区教研中学心2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    2023-2024学年江苏省泰兴市城黄北区教研中学心八年级数学第一学期期末教学质量检测模拟试题含答案:

    这是一份2023-2024学年江苏省泰兴市城黄北区教研中学心八年级数学第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了9的平方根是,若分式方程无解,则m的值为,若分式方程无解,则的值为,2-3的倒数是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map