贵州省遵义市2020-2022中考数学真题分类汇编-02填空题知识点分类
展开贵州省遵义市2020-2022中考数学真题分类汇编-02填空题知识点分类
一.科学记数法—表示较大的数
1.(2021•遵义)2021年5月15日,中国火星探测器“天问一号”在火星表面成功着陆,着陆点距离地球约为320000000千米,将数320000000用科学记数法表示为 .
二.平方差公式
2.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为 .
三.二次根式的加减法
3.(2020•遵义)计算:﹣的结果是 .
四.二元一次方程组的解
4.(2021•遵义)已知x,y满足的方程组是,则x+y的值为 .
五.一次函数与一元一次不等式
5.(2020•遵义)如图,直线y=kx+b(k、b是常数,k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为 .
六.一次函数的应用
6.(2022•遵义)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=.当AM+BN的值最小时,CM的长为 .
七.反比例函数与一次函数的交点问题
7.(2022•遵义)反比例函数y=(k≠0)与一次函数y=x﹣1交于点A(3,n),则k的值为 .
八.二次函数图象与系数的关系
8.(2021•遵义)抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过(0,0),(4,0)两点.则下列四个结论正确的有 (填写序号).
①4a+b=0;
②5a+3b+2c>0;
③若该抛物线y=ax2+bx+c与直线y=﹣3有交点,则a的取值范围是a≥;
④对于a的每一个确定值,如果一元二次方程ax2+bx+c﹣t=0(t为常数,t≤0)的根为整数,则t的值只有3个.
九.垂径定理的应用
9.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.
小组成员查阅相关资料,得到如下信息:
信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;
信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;
(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
根据以上信息,北纬28°纬线的长度约为 千米.
一十.三角形的外接圆与外心
10.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是 .
一十一.翻折变换(折叠问题)
11.(2020•遵义)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是 .
一十二.解直角三角形的应用
12.(2021•遵义)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为 m.(结果精确到0.1m,参考数据:≈1.73)
参考答案与试题解析
一.科学记数法—表示较大的数
1.(2021•遵义)2021年5月15日,中国火星探测器“天问一号”在火星表面成功着陆,着陆点距离地球约为320000000千米,将数320000000用科学记数法表示为 3.2×108 .
【解答】解:320000000=3.2×108.
故答案为:3.2×108.
二.平方差公式
2.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为 8 .
【解答】解:∵a+b=4,a﹣b=2,
∴a2﹣b2=(a+b)(a﹣b)
=4×2
=8,
故答案为:8.
三.二次根式的加减法
3.(2020•遵义)计算:﹣的结果是 .
【解答】解:=2﹣=.
故答案为:.
四.二元一次方程组的解
4.(2021•遵义)已知x,y满足的方程组是,则x+y的值为 5 .
【解答】解:,
②﹣①得,x+y=5,
故答案为5.
五.一次函数与一元一次不等式
5.(2020•遵义)如图,直线y=kx+b(k、b是常数,k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为 x<4 .
【解答】解:∵直线y=kx+b与直线y=2交于点A(4,2),
∴x<4时,y<2,
∴关于x的不等式kx+b<2的解集为x<4.
故答案为x<4.
六.一次函数的应用
6.(2022•遵义)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=.当AM+BN的值最小时,CM的长为 2﹣ .
【解答】解:过点A作AH⊥BC于点H.设AN=CM=x.
∵AB=AC=,∠BAC=90°,
∴BC==2,
∵AH⊥BC,
∴BH=AH=1,
∴AH=BH=CH=1,
∴AM+BN=+,
欲求AM+BN的最小值,相当于在x轴上寻找一点P(x,0),到E(1,1),F(0,)的距离和的最小值,如图1中,
作点F关于x轴的对称点F′,当E,P,F′共线时,PE+PF的值最小,
此时直线EF′的解析式为y=(+1)x﹣,
当y=0时,x=2﹣,
∴AM+BN的值最小时,CM的值为2﹣,
故答案为:2﹣.
七.反比例函数与一次函数的交点问题
7.(2022•遵义)反比例函数y=(k≠0)与一次函数y=x﹣1交于点A(3,n),则k的值为 6 .
【解答】解:∵一次函数y=x﹣1经过点A(3,n),
∴n=3﹣1=2,
∵反比例函数y=(k≠0)经过A(3,2)
∴k=3×2=6,
故答案为:6.
八.二次函数图象与系数的关系
8.(2021•遵义)抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过(0,0),(4,0)两点.则下列四个结论正确的有 ①③④ (填写序号).
①4a+b=0;
②5a+3b+2c>0;
③若该抛物线y=ax2+bx+c与直线y=﹣3有交点,则a的取值范围是a≥;
④对于a的每一个确定值,如果一元二次方程ax2+bx+c﹣t=0(t为常数,t≤0)的根为整数,则t的值只有3个.
【解答】解:将(0,0),(4,0)代入抛物线表达式得,
得,
∴抛物线解析式为y=ax2﹣4ax.
①b=﹣4a,b+4a=0,正确,
②5a+3b+2c=5a﹣12a=﹣7a,a>0,﹣7a<0,错误.
③当有交点时,ax2﹣4ax=﹣3,即一元二次方程ax2﹣4ax+3=0有实数根,
Δ=16a2﹣12a=a(16a﹣12)≥0,
∵a>0,
∴16a﹣12≥0,解得a,正确.
④一元二次方程可化为ax2﹣4ax﹣t=0,即抛物线y=ax2﹣4ax与直线y=t(t为常数,t≤0)的交点横坐标为整数,横坐标可以为0,1,2,3,4,有3个t满足,如图,
故答案为①③④.
九.垂径定理的应用
9.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.
小组成员查阅相关资料,得到如下信息:
信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;
信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;
(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
根据以上信息,北纬28°纬线的长度约为 33792 千米.
【解答】解:作OK⊥BC,则∠BKO=90°,
∵BC∥OA,∠AOB=28°,
∵∠B=∠AOB=28°,
在Rt△BOK中,OB=OA=6400.
∴BK=OB×cosB≈6400×0.88=5632,
∴北纬28°的纬线长C=2π•BK
≈2×3×5632
=33792(千米).
故答案为:33792.
一十.三角形的外接圆与外心
10.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是 .
【解答】解:连接OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,
∵⊙O是△ABC的外接圆,∠BAC=45°,
∴∠BOC=90°,
∵BD=4,CD=1,
∴BC=4+1=5,
∴OB=OC=,
∴OA=,OF=BF=,
∴DF=BD﹣BF=,
∴OG=,GD=,
解法一:在Rt△AGO中,AG==,
∴GE=,
∴DE=GE﹣GD=.
解法二:在Rt△AGO中,AG==,
∴AD=AG+GD=,
∵AD×DE=BD×CD,
∴DE==.
故答案为:.
一十一.翻折变换(折叠问题)
11.(2020•遵义)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是 .
【解答】解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,
∴AB=2BM,∠A′MB=90°,MN∥BC.
∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.
∴A′B=AB=2BM.
在Rt△A′MB中,∵∠A′MB=90°,
∴sin∠MA′B=,
∴∠MA′B=30°,
∵MN∥BC,
∴∠CBA′=∠MA′B=30°,
∵∠ABC=90°,
∴∠ABA′=60°,
∴∠ABE=∠EBA′=30°,
∴BE==.
故答案为:.
一十二.解直角三角形的应用
12.(2021•遵义)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为 8.5 m.(结果精确到0.1m,参考数据:≈1.73)
【解答】解:∵AB⊥BC,DC⊥BC,AD∥BC,
∴四边形ABCD是矩形,
∵BC=4m,AB=1.62m,
∴AD=BC=4m,DC=AB=1.62m,
Rt△AED中,∵∠DAE=60°,AD=4m,
∴ED=AD•tan60°=4×=4(m),
∴CE=ED+DC=4+1.62≈8.5(m)
答:这棵树的高度约为8.5m.
贵州省遵义市2020-2022中考数学真题分类汇编-01选择题知识点分类: 这是一份贵州省遵义市2020-2022中考数学真题分类汇编-01选择题知识点分类,共29页。
贵州省铜仁市2020-2022中考数学真题分类汇编-02填空题知识点分类: 这是一份贵州省铜仁市2020-2022中考数学真题分类汇编-02填空题知识点分类,共16页。试卷主要包含了观察下列各项,观察下列等式,因式分解,= ,不等式组的解集是 ,如图所示等内容,欢迎下载使用。
贵州省遵义市2020-2022中考数学真题分类汇编-03解答题知识点分类: 这是一份贵州省遵义市2020-2022中考数学真题分类汇编-03解答题知识点分类,共46页。试卷主要包含了计算,满足的函数图象如图所示,的“关联抛物线”为C2等内容,欢迎下载使用。