2022届四川省宜宾市叙州区中考数学全真模拟试题含解析
展开这是一份2022届四川省宜宾市叙州区中考数学全真模拟试题含解析,共16页。试卷主要包含了下列说法中不正确的是,下列各组数中,互为相反数的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是( )
A. B. C. D.
2.计算(﹣ab2)3的结果是( )
A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6
3.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是( )
A.6π B.12π C.18π D.24π
4.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为( )
A. B. C. D.
5.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
A. B. C. D.
6.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为( )
A. B. C. D.
7.下列说法中不正确的是( )
A.全等三角形的周长相等 B.全等三角形的面积相等
C.全等三角形能重合 D.全等三角形一定是等边三角形
8.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
9.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=( )
A.2:3 B.4:9 C.2:5 D.4:25
10.下列各组数中,互为相反数的是( )
A.﹣1与(﹣1)2 B.(﹣1)2与1 C.2与 D.2与|﹣2|
二、填空题(共7小题,每小题3分,满分21分)
11.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_____.
12.在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点.若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_____.
13.因式分解:y3﹣16y=_____.
14.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为 .
15.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.
16.分解因式:a3﹣a=_____.
17.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DE⊥EA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_____m.
三、解答题(共7小题,满分69分)
18.(10分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.
19.(5分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两
种型号客车的载客量和租金信息:
型号 | 载客量 | 租金单价 |
A | 30人/辆 | 380元/辆 |
B | 20人/辆 | 280元/辆 |
注:载客量指的是每辆客车最多可载该校师生的人数.
(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。
(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?
20.(8分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?
21.(10分)如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
22.(10分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)
23.(12分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC= °;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.
24.(14分)计算:﹣4cos45°+()﹣1+|﹣2|.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
俯视图是从上面看几何体得到的图形,据此进行判断即可.
【详解】
由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得
拿掉第一排的小正方形,
拿掉这个小立方体木块之后的几何体的俯视图是,
故选B.
【点睛】
本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.
2、D
【解析】
根据积的乘方与幂的乘方计算可得.
【详解】
解:(﹣ab2)3=﹣a3b6,
故选D.
【点睛】
本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算
法则.
3、A
【解析】
根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.
【详解】
∵,
∴∠AOB=∠BOC=∠COD=60°.
∴阴影部分面积=.
故答案为:A.
【点睛】
本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.
4、A
【解析】
根据图形,结合题目所给的运算法则列出方程组.
【详解】
图2所示的算筹图我们可以表述为:.
故选A.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
5、D
【解析】
试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
试题解析:画树状图如下:
共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
故选D.
考点:列表法与树状法.
6、A
【解析】
根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“Sn=()n﹣2”,依此规律即可得出结论.
【详解】
如图所示,
∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
∴DE2+CE2=CD2,DE=CE,
∴2S2=S1.
观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
∴Sn=()n﹣2.
当n=2018时,S2018=()2018﹣2=()3.
故选A.
【点睛】
本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn=()n﹣2”.
7、D
【解析】
根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
D.错误,全等三角也可能是直角三角,故选项正确.
故选D.
【点睛】
本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
8、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
9、D
【解析】
试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25
试题解析:∵四边形ABCD是平行四边形,
∴AB∥CD,BA=DC
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∴DE:AB=DE:DC=2:5,
∴S△DEF:S△ABF=4:25,
考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.
10、A
【解析】
根据相反数的定义,对每个选项进行判断即可.
【详解】
解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;
B、(﹣1)2=1,故错误;
C、2与互为倒数,故错误;
D、2=|﹣2|,故错误;
故选:A.
【点睛】
本题考查了相反数的定义,解题的关键是掌握相反数的定义.
二、填空题(共7小题,每小题3分,满分21分)
11、6.28×1.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
62800用科学记数法表示为6.28×1.
故答案为6.28×1.
【点睛】
此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、
【解析】
设PM=x,根据黄金分割的概念列出比例式,计算即可.
【详解】
设PM=x,则PN=1-x,
由得,,
化简得:x2+x-1=0,
解得:x1=,x2=(负值舍去),
所以PM的长为.
【点睛】
本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.
13、y(y+4)(y﹣4)
【解析】
试题解析:原式
故答案为
点睛:提取公因式法和公式法相结合因式分解.
14、.
【解析】
试题分析:设正方形的边长为y,EC=x,
由题意知,AE2=AB2+BE2,
即(x+y)2=y2+(y-x)2,
由于y≠0,
化简得y=4x,
∴sin∠EAB=.
考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义
15、120
【解析】
首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.
【详解】
由题意得:∠GBA=∠GBE,
∵AD∥BC,
∴∠AGB=∠GBE=30°,
∴∠ABC=60°,
∵AB∥CD,
∴∠C=180°-∠ABC=120°,
故答案为:120.
【点睛】
本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识
16、a(a+1)(a﹣1)
【解析】
解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).
17、1
【解析】
先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.
【详解】
解:作DF⊥AB于F,交BC于G.则四边形DEAF是矩形,
∴DE=AF=15m,
∵DF∥AE,
∴∠BGF=∠BCA=60°,
∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,
∴∠GDB=∠GBD=30°,
∴GD=GB,
在Rt△DCE中,∵CD=2DE,
∴∠DCE=30°,
∴∠DCB=90°,
∵∠DGC=∠BGF,∠DCG=∠BFG=90°
∴△DGC≌△BGF,
∴BF=DC=30m,
∴AB=30+15=1(m),
故答案为1.
【点睛】
本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.
三、解答题(共7小题,满分69分)
18、 (1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
【解析】
(1)直接利用位似图形的性质得出对应点位置进而得出答案;
(2)利用(1)中所画图形进而得出答案.
【详解】
(1)如图所示:△OA1B1,△OA2B2,即为所求;
(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
【点睛】
此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.
19、(1)y=100x+17360;(2)3种方案:A型车21辆,B型车41辆最省钱.
【解析】
(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;
(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题.
【详解】
(1)由题意:y=380x+280(62-x)=100x+17360,
∵30x+20(62-x)≥1441,
∴x≥20.1,
又∵x为整数,
∴x的取值范围为21≤x≤62的整数;
(2)由题意100x+17360≤19720,
∴x≤23.6,
∴21≤x≤23,
∴共有3种租车方案,
x=21时,y有最小值=1.
即租租A型车21辆,B型车41辆最省钱.
【点睛】
本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.
20、(1)60;(2)20,20;(3)38000
【解析】
(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;
(2)先确定各组的人数,然后根据中位数和众数的定义求解;
(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.
【详解】
(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);
(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.
∵20出现次数最多,∴众数为20元;
∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;
(3)2000=38000(元),∴估算全校学生共捐款38000元.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.
21、(1)A(-1,0),B(0,1),D(1,0)
(2)一次函数的解析式为 反比例函数的解析式为
【解析】解:(1)∵OA=OB=OD=1,
∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0)。
(2)∵点A、B在一次函数(k≠0)的图象上,
∴,解得。
∴一次函数的解析式为。
∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2)。
又∵点C在反比例函数(m≠0)的图象上,∴m=1×2=2。
∴反比例函数的解析式为。
(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。
(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。
22、见解析
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.
【详解】
解:如图,点E即为所求作的点.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.
23、(1)125;(2)详见解析;(3)45°<α<90°.
【解析】
(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
(2)证明△ABC≌△EDC(AAS)即可求解;
(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.
【详解】
(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
而∠ADC+∠EDC=180°,
∴∠ABC=∠PDC=α=125°,
故答案为125;
(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,
∴∠ACB=∠ECD,
又BC=DC,由(1)知:∠ABC=∠PDC,
∴△ABC≌△EDC(AAS),
∴AC=CE;
(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.
【点睛】
本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.
24、4
【解析】
分析:
代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.
详解:
原式=.
点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:(为正整数)”是正确解答本题的关键.
相关试卷
这是一份2024年四川省宜宾市叙州区龙文学校中考数学模拟试题+,共3页。试卷主要包含了的相反数是,如图所示的几何体的俯视图是,下列计算正确的是,下列说法不正确的是等内容,欢迎下载使用。
这是一份2023年四川省宜宾市叙州区龙文学校中考数学模拟试卷(三)(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 四川省宜宾市叙州区2019年中考数学押题卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。