年终活动
搜索
    上传资料 赚现金

    2022届陕西省西安市高新区三中学中考数学模拟精编试卷含解析

    立即下载
    加入资料篮
    2022届陕西省西安市高新区三中学中考数学模拟精编试卷含解析第1页
    2022届陕西省西安市高新区三中学中考数学模拟精编试卷含解析第2页
    2022届陕西省西安市高新区三中学中考数学模拟精编试卷含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届陕西省西安市高新区三中学中考数学模拟精编试卷含解析

    展开

    这是一份2022届陕西省西安市高新区三中学中考数学模拟精编试卷含解析,共27页。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    2.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为(  )
    A. B. C. D.
    3.对于一组统计数据1,1,6,5,1.下列说法错误的是(  )
    A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
    4.下列汽车标志中,不是轴对称图形的是( )
    A. B. C. D.
    5.如图,一艘海轮位于灯塔P的南偏东70°方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40°的N处,则N处与灯塔P的 距离为

    A.40海里 B.60海里 C.70海里 D.80海里
    6.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )

    A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c
    7.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )

    A.30° B.50° C.60° D.70°
    8.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是

    A.射线OE是∠AOB的平分线
    B.△COD是等腰三角形
    C.C、D两点关于OE所在直线对称
    D.O、E两点关于CD所在直线对称
    9.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是(  )
    成绩(环)
    7
    8
    9
    10
    次数
    1
    4
    3
    2
    A.8、8 B.8、8.5 C.8、9 D.8、10
    10.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是(  )

    A. B. C. D.
    11.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为(  )
    A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣4
    12.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.

    14.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.
    15.不等式组的解是____.
    16.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.

    17.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是______.

    18.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平面直角坐标系xOy中,函数的图象与直线y=2x+1交于点A(1,m).
    (1)求k、m的值;
    (2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.

    ①当n=3时,求线段AB上的整点个数;
    ②若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.
    20.(6分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.
    (1)求双曲线解析式;
    (2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.

    21.(6分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.

    22.(8分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
    (1)求该抛物线的解析式;
    (2)阅读理解:
    在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
    解决问题:
    ①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
    ②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.

    23.(8分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:
    (Ⅰ)求反比例函数的解析式;
    (Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;
    (Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

    24.(10分)如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).
    (1)求抛物线C1 的解析式.
    (2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.

    25.(10分)综合与实践﹣﹣﹣折叠中的数学
    在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.
    问题背景:
    在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.
    猜想与证明:
    (1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;
    操作与画图:
    (2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);
    操作与探究:
    (3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN 并延长MN交EF于点O.
    求证:MO⊥EF 且MO平分EF;
    (4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D'所经过的路径的长为   .

    26.(12分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:
    本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?
    27.(12分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.

    (1)求证:四边形是平行四边形;
    (2)如果,求证四边形是矩形.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    2、A
    【解析】
    根据锐角三角函数的定义求出即可.
    【详解】
    解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=.
    故选A.
    【点睛】
    本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.
    3、D
    【解析】
    根据中位数、众数、方差等的概念计算即可得解.
    【详解】
    A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
    B、由平均数公式求得这组数据的平均数为4,故此选项正确;
    C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
    D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
    故选D.
    考点:1.众数;2.平均数;1.方差;4.中位数.
    4、C
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    A、是轴对称图形,故错误;
    B、是轴对称图形,故错误;
    C、不是轴对称图形,故正确;
    D、是轴对称图形,故错误.
    故选C.
    【点睛】
    本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
    5、D
    【解析】
    分析:依题意,知MN=40海里/小时×2小时=80海里,
    ∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,
    ∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.
    ∴NP=NM=80海里.故选D.
    6、A
    【解析】
    观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
    【详解】
    解:依题意,得:b=a+1,c=a+7,d=a+1.
    A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
    ∴a﹣d≠b﹣c,选项A符合题意;
    B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
    ∴a+c+2=b+d,选项B不符合题意;
    C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
    ∴a+b+14=c+d,选项C不符合题意;
    D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
    ∴a+d=b+c,选项D不符合题意.
    故选:A.
    【点睛】
    考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
    7、C
    【解析】
    试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
    ∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
    故选C.

    考点:圆周角定理
    8、D
    【解析】
    试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.

    ∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,
    ∴△EOC≌△EOD(SSS).
    ∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.
    B、根据作图得到OC=OD,
    ∴△COD是等腰三角形,正确,不符合题意.
    C、根据作图得到OC=OD,
    又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
    ∴C、D两点关于OE所在直线对称,正确,不符合题意.
    D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,
    ∴O、E两点关于CD所在直线不对称,错误,符合题意.
    故选D.
    9、B
    【解析】
    根据众数和中位数的概念求解.
    【详解】
    由表可知,8环出现次数最多,有4次,所以众数为8环;
    这10个数据的中位数为第5、6个数据的平均数,即中位数为=8.5(环),
    故选:B.
    【点睛】
    本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    10、C
    【解析】
    过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
    【详解】
    如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.
    【点睛】
    本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
    11、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
    【详解】
    14400=1.44×1.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    12、B
    【解析】
    根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.
    【详解】
    (1)当0≤x≤2时,
    BQ=2x


    当2≤x≤4时,如下图


    由上可知
    故选:B.
    【点睛】
    本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(7+6)
    【解析】
    过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.
    【详解】
    解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,

    ∵坝顶部宽为2m,坝高为6m,
    ∴DC=EF=2m,EC=DF=6m,
    ∵α=30°,
    ∴BE= (m),
    ∵背水坡的坡比为1.2:1,
    ∴,
    解得:AF=5(m),
    则AB=AF+EF+BE=5+2+6=(7+6)m,
    故答案为(7+6)m.
    【点睛】
    本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.
    14、1.73×1.
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将17.3万用科学记数法表示为1.73×1.
    故答案为1.73×1.
    【点睛】
    本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
    15、
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】

    解不等式①,得x>1,
    解不等式②,得x≤1,
    所以不等式组的解集是1<x≤1,
    故答案是:1<x≤1.
    【点睛】
    考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    16、3
    【解析】
    【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.
    【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,
    ∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,
    ∴EF=BC=3,AE=AB,
    ∵DE=EF,
    ∴AD=DE=3,
    ∴AE==3,
    ∴AB=3,
    故答案为3.
    【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.
    17、或5或1.
    【解析】
    根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.
    【详解】
    解:如图
    (1)当在△ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.
    (2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,
    (3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:
    则AN=3,AC=,AD=m,
    得:,得m=,
    综上所述:m为或5或1,
    所以答案:或5或1.
    【点睛】
    本题主要考查等腰三角形的性质,注意分类讨论的完整性.
    18、.
    【解析】
    试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.
    由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,
    ∴∠EFC+∠AFB=90°,∵∠B=90°,
    ∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,
    ∴cos∠EFC=,故答案为:.
    考点:轴对称的性质,矩形的性质,余弦的概念.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.
    【解析】
    (1)将A点代入直线解析式可求m,再代入,可求k.
    (2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.
    ②根据图象可以直接判断2≤n<3.
    【详解】
    (1)∵点A(1,m)在y=2x+1上,
    ∴m=2×1+1=3.
    ∴A(1,3).
    ∵点A(1,3)在函数的图象上,
    ∴k=3.
    (2)①当n=3时,B、C两点的坐标为B(3,7)、C(3,1).
    ∵整点在线段AB上
    ∴1≤x≤3且x为整数
    ∴x=1,2,3
    ∴当x=1时,y=3,
    当x=2时,y=5,
    当x=3时,y=7,
    ∴线段AB上有(1,3)、(2,5)、(3,7)共3个整点.

    ②由图象可得当2≤n<3时,有五个整点.
    【点睛】
    本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.
    20、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    21、证明见解析.
    【解析】
    试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.
    试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.
    考点:1.全等三角形的判定与性质;2.平行四边形的性质.
    22、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
    (3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
    【详解】
    解:(1)将A,B点坐标代入,得

    解得,
    抛物线的解析式为y=;
    (2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
    2m=﹣1,
    即m=﹣;
    故答案为﹣;
    ②AB的解析式为
    当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
    联立PA与抛物线,得,
    解得(舍),,
    即P(6,﹣14);
    当PB⊥AB时,PB的解析式为y=﹣2x+3,
    联立PB与抛物线,得,
    解得(舍),
    即P(4,﹣5),
    综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
    (3)如图:

    ∵M(t,﹣t2+t+1),Q(t, t+),
    ∴MQ=﹣t2+
    S△MAB=MQ|xB﹣xA|
    =(﹣t2+)×2
    =﹣t2+,
    当t=0时,S取最大值,即M(0,1).
    由勾股定理,得
    AB==,
    设M到AB的距离为h,由三角形的面积,得
    h==.
    点M到直线AB的距离的最大值是.
    【点睛】
    本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
    23、(1)反比例函数的解析式为y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).
    【解析】
    试题分析:(1)把点B(3,﹣1)带入反比例函数中,即可求得k的值;
    (2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;
    (3)把A(1,a)是反比例函数的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.
    试题解析:(1)∵B(3,﹣1)在反比例函数的图象上,
    ∴-1=,
    ∴m=-3,
    ∴反比例函数的解析式为;
    (2),
    ∴=,
    x2-x-6=0,
    (x-3)(x+2)=0,
    x1=3,x2=-2,
    当x=-2时,y=,
    ∴D(-2,);
    y1>y2时x的取值范围是-2

    相关试卷

    2023年陕西省西安市阎良区中考数学模拟试卷(三)(含解析):

    这是一份2023年陕西省西安市阎良区中考数学模拟试卷(三)(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2022年山东省济南市高新区中考数学模拟精编试卷含解析:

    这是一份2022年山东省济南市高新区中考数学模拟精编试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,用一根长为a等内容,欢迎下载使用。

    2022届陕西省西安市碑林区西北工业大附属中学中考数学模拟精编试卷含解析:

    这是一份2022届陕西省西安市碑林区西北工业大附属中学中考数学模拟精编试卷含解析,共20页。试卷主要包含了|﹣3|=,如图,过点A等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map