2022届陕西省西安市碑林区西北工业大附属中学中考数学模拟精编试卷含解析
展开
这是一份2022届陕西省西安市碑林区西北工业大附属中学中考数学模拟精编试卷含解析,共20页。试卷主要包含了|﹣3|=,如图,过点A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )
A. B. C. D.
2.在△ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DE∥BC的是( )
A. B. C. D.
3.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为( )
A.3 B.4 C.6 D.8
4.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数 B.中位数 C.众数 D.方差
5.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )
A.= B.=
C.= D.=
6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是( )
A.1 B.2 C.3 D.4
7.|﹣3|=( )
A. B.﹣ C.3 D.﹣3
8.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是( )
A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20
9.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:
步数(万步)
1.0
1.2
1.1
1.4
1.3
天数
3
3
5
7
12
在每天所走的步数这组数据中,众数和中位数分别是( )
A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4
10.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为( )
A.6 B.7 C.8 D.10
11.-的立方根是( )
A.-8 B.-4 C.-2 D.不存在
12.下列所给函数中,y随x的增大而减小的是( )
A.y=﹣x﹣1 B.y=2x2(x≥0)
C. D.y=x+1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=,则阴影部分的面积是___.
14.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.
15.如果,那么______.
16.如果不等式无解,则a的取值范围是 ________
17.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
18.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:﹣4cos45°+()﹣1+|﹣2|.
20.(6分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF
(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
(2)若AB=2,AE=2,求∠BAD的大小.
21.(6分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.
22.(8分)已知是的函数,自变量的取值范围是的全体实数,如表是与的几组对应值.
小华根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
(1)从表格中读出,当自变量是﹣2时,函数值是 ;
(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)在画出的函数图象上标出时所对应的点,并写出 .
(4)结合函数的图象,写出该函数的一条性质: .
23.(8分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)
24.(10分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
25.(10分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
26.(12分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
(1)A,B 两处粮仓原有存粮各多少吨?
(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.
27.(12分)计算:(π﹣3.14)0﹣2﹣|﹣3|.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.
考点:简单几何体的三视图.
2、D
【解析】
如图,∵AD=1,BD=3,
∴,
当时,,
又∵∠DAE=∠BAC,
∴△ADE∽△ABC,
∴∠ADE=∠B,
∴DE∥BC,
而根据选项A、B、C的条件都不能推出DE∥BC,
故选D.
3、D
【解析】
连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.
【详解】
连接OA.
∵⊙O的半径为5,CD=2,
∵OD=5-2=3,即OD=3;
又∵AB是⊙O的弦,OC⊥AB,
∴AD=AB;
在直角三角形ODC中,根据勾股定理,得
AD==4,
∴AB=1.
故选D.
【点睛】
本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.
4、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
5、A
【解析】
设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.
【详解】
设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.
故选A.
【点睛】
本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.
6、B
【解析】
由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.
【详解】
解:∵图象开口向下,∴a<0,
∵对称轴为直线x=2,∴>0,∴b>0,
∵与y轴的交点在x轴的下方,∴c<0,
∴abc>0,故①错误.
∵对称轴为直线x=2,∴=2,∴a=,
∵由图象可知当x=1时,y>0,
∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,
∴3b+4c>0,故②错误.
∵由图象可知OA<1,且OA=OC,
∴OC<1,即-c<1,
∴c>-1,故③正确.
∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,
整理可得ac-b+1=0,
两边同时乘c可得ac2-bc+c=0,
∴方程有一个根为x=-c,
由③可知-c=OA,而当x=OA是方程的根,
∴x=-c是方程的根,即假设成立,故④正确.
综上可知正确的结论有三个:③④.
故选B.
【点睛】
本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.
7、C
【解析】
根据绝对值的定义解答即可.
【详解】
|-3|=3
故选:C
【点睛】
本题考查的是绝对值,理解绝对值的定义是关键.
8、A
【解析】
若反比例函数与三角形交于A(4,5),则k=20;
若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.
故选A.
9、B
【解析】
在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.
【详解】
在这组数据中出现次数最多的是1.1,即众数是1.1.
要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.
故选B.
【点睛】
本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
10、C
【解析】
∵∠ACB=90°,D为AB的中点,AB=6,
∴CD=AB=1.
又CE=CD,
∴CE=1,
∴ED=CE+CD=2.
又∵BF∥DE,点D是AB的中点,
∴ED是△AFB的中位线,
∴BF=2ED=3.
故选C.
11、C
【解析】
分析:首先求出的值,然后根据立方根的计算法则得出答案.
详解:∵,, ∴的立方根为-2,故选C.
点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键.
12、A
【解析】
根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.
【详解】
解:A.此函数为一次函数,y随x的增大而减小,正确;
B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;
C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;
D.此函数为一次函数,y随x的增大而增大,错误.
故选A.
【点睛】
本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、﹣
【解析】
连接OB.
∵AB是⊙O切线,
∴OB⊥AB,
∵OC=OB,∠C=30°,
∴∠C=∠OBC=30°,
∴∠AOB=∠C+∠OBC=60°,
在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,
∴OB=1,
∴S阴=S△ABO﹣S扇形OBD=×1×﹣ =﹣ .
14、CD的中点
【解析】
根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.
【详解】
∵△ADE旋转后能与△BEC重合,
∴△ADE≌△BEC,
∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,
∴∠AED+∠BEC=90°,
∴∠DEC=90°,
∴△DEC是等腰直角三角形,
∴D与E,E与C是对应顶点,
∵CD的中点到D,E,C三点的距离相等,
∴旋转中心是CD的中点,
故答案为:CD的中点.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.
15、;
【解析】
先对等式进行转换,再求解.
【详解】
∵
∴3x=5x-5y
∴2x=5y
∴
【点睛】
本题考查的是分式,熟练掌握分式是解题的关键.
16、a≥1
【解析】
将不等式组解出来,根据不等式组无解,求出a的取值范围.
【详解】
解得,
∵无解,
∴a≥1.
故答案为a≥1.
【点睛】
本题考查了解一元一次不等式组,解题的关键是熟练的掌握解一元一次不等式组的运算法则.
17、60°或120°.
【解析】
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
【详解】
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,
∴
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
于是∠ACB的度数为60°或120°,
故答案为60°或120°.
【点睛】
本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
18、1
【解析】
解:3=2+1;
5=3+2;
8=5+3;
13=8+5;
…
可以发现:从第三个数起,每一个数都等于它前面两个数的和.
则第8个数为13+8=21;
第9个数为21+13=34;
第10个数为34+21=1.
故答案为1.
点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、4
【解析】
分析:
代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.
详解:
原式=.
点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:(为正整数)”是正确解答本题的关键.
20、 (1)见解析;(2) 60°.
【解析】
(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;
(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.
【详解】
解:(1)在△AEB和△AEF中,
,
∴△AEB≌△AEF,
∴∠EAB=∠EAF,
∵AD∥BC,
∴∠EAF=∠AEB=∠EAB,
∴BE=AB=AF.
∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AB=BE,
∴四边形ABEF是菱形;
(2)连结BF,交AE于G.
∵AB=AF=2,
∴GA=AE=×2=,
在Rt△AGB中,cos∠BAE==,
∴∠BAG=30°,
∴∠BAF=2∠BAG=60°,
【点睛】
本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.
21、见解析
【解析】
由菱形的性质可得,,然后根据角角边判定,进而得到.
【详解】
证明:∵菱形ABCD,
∴,,
∵,,
∴,
在与中,
,
∴,
∴.
【点睛】
本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.
22、(1);(2)见解析;(3);(4)当时,随的增大而减小.
【解析】
(1)根据表中,的对应值即可得到结论;
(2)按照自变量由小到大,利用平滑的曲线连结各点即可;
(3)在所画的函数图象上找出自变量为7所对应的函数值即可;
(4)利用函数图象的图象求解.
【详解】
解:(1)当自变量是﹣2时,函数值是;
故答案为:.
(2)该函数的图象如图所示;
(3)当时所对应的点 如图所示,
且;
故答案为:;
(4)函数的性质:当时,随的增大而减小.
故答案为:当时,随的增大而减小.
【点睛】
本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.
23、该雕塑的高度为(2+2)米.
【解析】
过点C作CD⊥AB,设CD=x,由∠CBD=45°知BD=CD=x米,根据tanA=列出关于x的方程,解之可得.
【详解】
解:如图,过点C作CD⊥AB,交AB延长线于点D,
设CD=x米,
∵∠CBD=45°,∠BDC=90°,
∴BD=CD=x米,
∵∠A=30°,AD=AB+BD=4+x,
∴tanA=,即,
解得:x=2+2,
答:该雕塑的高度为(2+2)米.
【点睛】
本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用.
24、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.
【解析】
(1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.
【详解】
(1)设该地投入异地安置资金的年平均增长率为x,根据题意,
得:1280(1+x)2=1280+1600,
解得:x=0.5或x=﹣2.25(舍),
答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;
(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,
得:1000×8×400+(a﹣1000)×5×400≥5000000,
解得:a≥1900,
答:今年该地至少有1900户享受到优先搬迁租房奖励.
考点:一元二次方程的应用;一元一次不等式的应用.
25、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
【解析】
试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<1.
考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
26、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
【解析】
(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
(3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
【详解】
(1)设A,B两处粮仓原有存粮x,y吨
根据题意得:
解得:x=270,y=1.
答:A,B两处粮仓原有存粮分别是270,1吨.
(2)A粮仓支援C粮仓的粮食是×270=162(吨),
B粮仓支援C粮仓的粮食是×1=72(吨),
A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
∵234>200,
∴此次调拨能满足C粮仓需求.
(3)如图,
根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
在Rt△ABC中,sin∠BAC=,
∴BC=AB•sin∠BAC=1×0.44=79.2.
∵此车最多可行驶4×35=140(千米)<2×79.2,
∴小王途中须加油才能安全回到B地.
【点睛】
求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
27、﹣1.
【解析】
本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式
=1﹣3+4﹣3,
=﹣1.
【点睛】
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
相关试卷
这是一份陕西省西安市碑林区西北工业大附属中学2023-2024学年九上数学期末经典试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列图形中的角是圆周角的是等内容,欢迎下载使用。
这是一份2023年陕西省西安市碑林区西安工业大学附属中学中考数学七模试卷(含答案),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年陕西省西安市碑林区+西安工业大学附属中学中考数学三模试卷(含答案),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。