|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省苏州市高新区文昌实验中学中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省苏州市高新区文昌实验中学中考数学模拟精编试卷含解析01
    2021-2022学年江苏省苏州市高新区文昌实验中学中考数学模拟精编试卷含解析02
    2021-2022学年江苏省苏州市高新区文昌实验中学中考数学模拟精编试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省苏州市高新区文昌实验中学中考数学模拟精编试卷含解析

    展开
    这是一份2021-2022学年江苏省苏州市高新区文昌实验中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,的算术平方根为,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年.“”这个数据用科学记数法表示为( )
    A. B. C. D..
    2.某中学篮球队12名队员的年龄如下表:
    年龄:(岁)
    13
    14
    15
    16
    人数
    1
    5
    4
    2
    关于这12名队员的年龄,下列说法错误的是( )
    A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁
    3.下列计算正确的是(  )
    A.2m+3n=5mn B.m2•m3=m6 C.m8÷m6=m2 D.(﹣m)3=m3
    4.的算术平方根为( )
    A. B. C. D.
    5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )

    A.3:4 B.9:16 C.9:1 D.3:1
    6.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(  )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)
    A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里
    7.如图,在已知的△ ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是(  )

    A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB
    8.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为(  )

    A.31cm B.41cm C.51cm D.61cm
    9.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )

    A.40° B.45° C.50° D.55°
    10.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是(  )

    A.1 B.3 C.4 D.5
    二、填空题(共7小题,每小题3分,满分21分)
    11.分解因式:2a4﹣4a2+2=_____.
    12.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.

    13.一元二次方程x﹣1=x2﹣1的根是_____.
    14.△ABC的顶点都在方格纸的格点上,则sinA=_ ▲ .

    15.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.

    16.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.

    17.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;
    看法
    频数
    频率
    赞成
    5

    无所谓

    0.1
    反对
    40
    0.8
    (1)本次调查共调查了   人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.

    19.(5分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.
    (1)设∠ONP=α,求∠AMN的度数;
    (2)写出线段AM、BC之间的等量关系,并证明.

    20.(8分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)

    21.(10分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
    22.(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.

    并整理分析数据如下表:

    平均成绩/环
    中位数/环
    众数/环
    方差


    7
    7
    1.2

    7

    8

    (1)求,,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
    23.(12分) (1)解方程组
    (2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
    24.(14分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
    (1)如图1,猜想∠QEP=   °;
    (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
    (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
    【详解】
    32400000=3.24×107元.
    故选C.
    【点睛】
    此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
    2、D
    【解析】
    分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.
    解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;
    极差是:16﹣13=3,故选项B正确,不合题意;
    中位数是:14.5,故选项C正确,不合题意;
    平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.
    故选D.
    “点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
    3、C
    【解析】
    根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
    【详解】
    解:A、2m与3n不是同类项,不能合并,故错误;
    B、m2•m3=m5,故错误;
    C、正确;
    D、(-m)3=-m3,故错误;
    故选:C.
    【点睛】
    本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
    4、B
    【解析】
    分析:先求得的值,再继续求所求数的算术平方根即可.
    详解:∵=2,
    而2的算术平方根是,
    ∴的算术平方根是,
    故选B.
    点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.
    5、B
    【解析】
    可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴DC∥AB,
    ∴△DFE∽△BFA,
    ∵DE:EC=3:1,
    ∴DE:DC=3:4,
    ∴DE:AB=3:4,
    ∴S△DFE:S△BFA=9:1.
    故选B.
    6、B
    【解析】
    根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE= x,AB=BE=CE=2x,由AC=AD+DE+EC=2 x+2x=30,解之即可得出答案.
    【详解】
    根据题意画出图如图所示:作BD⊥AC,取BE=CE,

    ∵AC=30,∠CAB=30°∠ACB=15°,
    ∴∠ABC=135°,
    又∵BE=CE,
    ∴∠ACB=∠EBC=15°,
    ∴∠ABE=120°,
    又∵∠CAB=30°
    ∴BA=BE,AD=DE,
    设BD=x,
    在Rt△ABD中,
    ∴AD=DE= x,AB=BE=CE=2x,
    ∴AC=AD+DE+EC=2 x+2x=30,
    ∴x= = ≈5.49,
    故答案选:B.
    【点睛】
    本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.
    7、B
    【解析】
    作弧后可知MN⊥CB,且CD=DB.
    【详解】
    由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.
    【点睛】
    了解中垂线的作图规则是解题的关键.
    8、C
    【解析】
    ∵DG是AB边的垂直平分线,
    ∴GA=GB,
    △AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
    ∴△ABC的周长=AC+BC+AB=51cm,
    故选C.
    9、D
    【解析】
    试题分析:如图,

    连接OC,
    ∵AO∥DC,
    ∴∠ODC=∠AOD=70°,
    ∵OD=OC,
    ∴∠ODC=∠OCD=70°,
    ∴∠COD=40°,
    ∴∠AOC=110°,
    ∴∠B=∠AOC=55°.
    故选D.
    考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
    10、D
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由抛物线的对称轴可知:,
    ∴,
    由抛物线与轴的交点可知:,
    ∴,
    ∴,故①正确;
    ②抛物线与轴只有一个交点,
    ∴,
    ∴,故②正确;
    ③令,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,故③正确;
    ④由图象可知:令,
    即的解为,
    ∴的根为,故④正确;
    ⑤∵,
    ∴,故⑤正确;
    故选D.
    【点睛】
    考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1(a+1)1(a﹣1)1.
    【解析】
    原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,
    故答案为:1(a+1)1(a﹣1)1
    【点睛】
    本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.
    12、
    【解析】
    先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.
    【详解】
    分别过点 作y轴的垂线交y轴于点,

    ∵点B在上









    同理, 都是含30°的直角三角形
    ∵,


    同理,点 的横坐标为
    纵坐标为
    故点的坐标为
    故答案为:;.
    【点睛】
    本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.
    13、x=0或x=1.
    【解析】
    利用因式分解法求解可得.
    【详解】
    ∵(x﹣1)﹣(x+1)(x﹣1)=0,
    ∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
    则x=0或x=1,
    故答案为:x=0或x=1.
    【点睛】
    本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
    14、
    【解析】
    在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.
    【详解】

    在直角△ABD中,BD=1,AB=2,
    则AD===,
    则sinA= ==.
    故答案是:.
    15、
    【解析】
    如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
    【详解】
    解:如图,设AH=x,GB=y,

    ∵EH∥BC,


    ∵FG∥AC,


    由①②可得x=,y=2,
    ∴AC=,BC=7,
    ∴S△ABC=,
    故答案为.
    【点睛】
    本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
    16、CD的中点
    【解析】
    根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.
    【详解】
    ∵△ADE旋转后能与△BEC重合,
    ∴△ADE≌△BEC,
    ∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,
    ∴∠AED+∠BEC=90°,
    ∴∠DEC=90°,
    ∴△DEC是等腰直角三角形,
    ∴D与E,E与C是对应顶点,
    ∵CD的中点到D,E,C三点的距离相等,
    ∴旋转中心是CD的中点,
    故答案为:CD的中点.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.
    17、3:4
    【解析】
    由于相似三角形的相似比等于对应中线的比,
    ∴△ABC与△DEF对应中线的比为3:4
    故答案为3:4.

    三、解答题(共7小题,满分69分)
    18、(1)50;(2)见解析;(3)2400.
    【解析】
    (1)用反对的频数除以反对的频率得到调查的总人数;
    (2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;
    (3)根据题意列式计算即可.
    【详解】
    解:(1)观察统计表知道:反对的频数为40,频率为0.8,
    故调查的人数为:40÷0.8=50人;
    故答案为:50;
    (2)无所谓的频数为:50﹣5﹣40=5人,
    赞成的频率为:1﹣0.1﹣0.8=0.1;
    看法
    频数
    频率
    赞成
    5
    0.1
    无所谓
    5
    0.1
    反对
    40
    0.8
    统计图为:

    (3)0.8×3000=2400人,
    答:该校持“反对”态度的学生人数是2400人.
    【点睛】
    本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    19、(1)45°(2),理由见解析
    【解析】
    (1)由线段的垂直平分线的性质可得PM=PN,PO⊥MN,由等腰三角形的性质可得∠PMN=∠PNM=α,由正方形的性质可得AP=PN,∠APN=90°,可得∠APO=α,由三角形内角和定理可求∠AMN的度数;
    (2)由等腰直角三角形的性质和正方形的性质可得,,∠MNC=∠ANB=45°,可证△CBN∽△MAN,可得.
    【详解】
    解:(1)如图,连接MP,

    ∵直线l是线段MN的垂直平分线,
    ∴PM=PN,PO⊥MN
    ∴∠PMN=∠PNM=α
    ∴∠MPO=∠NPO=90°-α,
    ∵四边形ABNP是正方形
    ∴AP=PN,∠APN=90°
    ∴AP=MP,∠APO=90°-(90°-α)=α
    ∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,
    ∵AP=PM
    ∴,
    ∴∠AMN=∠AMP-∠PMN=45°+α-α=45°
    (2)
    理由如下:
    如图,连接AN,CN,

    ∵直线l是线段MN的垂直平分线,
    ∴CM=CN,
    ∴∠CMN=∠CNM=45°,
    ∴∠MCN=90°
    ∴,
    ∵四边形APNB是正方形
    ∴∠ANB=∠BAN=45°
    ∴,∠MNC=∠ANB=45°
    ∴∠ANM=∠BNC
    又∵
    ∴△CBN∽△MAN


    【点睛】
    本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.
    20、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
    【解析】
    解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).
    在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).
    ∴(米).
    ∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
    在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.
    21、-17.1
    【解析】
    按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
    【详解】
    解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
    =﹣8﹣14﹣9÷(﹣2),
    =﹣62+4.1,
    =﹣17.1.
    【点睛】
    此题要注意正确掌握运算顺序以及符号的处理.
    22、(1)a=7,b=7.5,c=4.2;(2)见解析.
    【解析】
    (1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
    (2)结合平均数和中位数、众数、方差三方面的特点进行分析.
    【详解】
    (1)甲的平均成绩a==7(环),
    ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
    ∴乙射击成绩的中位数b==7.5(环),
    其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]
    =×(16+9+1+3+4+9)
    =4.2;
    (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
    综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
    【点睛】
    本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
    23、(1);(2)当坐标为时,取得最小值为.
    【解析】
    (1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值.
    【详解】
    解:(1)
    ①②得:
    解得:
    把代入②得,
    则方程组的解为
    (2 )由题意得:,
    当坐标为时,取得最小值为.
    【点睛】
    此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.
    24、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
    【解析】
    (1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
    (2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
    (3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
    【详解】
    解:(1)∠QEP=60°;
    证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
    ∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
    则在△CPA和△CQB中,

    ∴△CQB≌△CPA(SAS),
    ∴∠CQB=∠CPA,
    又因为△PEM和△CQM中,∠EMP=∠CMQ,
    ∴∠QEP=∠QCP=60°.
    故答案为60;

    (2)∠QEP=60°.以∠DAC是锐角为例.
    证明:如图2,∵△ABC是等边三角形,
    ∴AC=BC,∠ACB=60°,
    ∵线段CP绕点C顺时针旋转60°得到线段CQ,
    ∴CP=CQ,∠PCQ=60°,
    ∴∠ACB+∠BCP=∠BCP+∠PCQ,
    即∠ACP=∠BCQ,
    在△ACP和△BCQ中,

    ∴△ACP≌△BCQ(SAS),
    ∴∠APC=∠Q,
    ∵∠1=∠2,
    ∴∠QEP=∠PCQ=60°; 

    (3)连结CQ,作CH⊥AD于H,如图3,
    与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
    ∵∠DAC=135°,∠ACP=15°,
    ∴∠APC=30°,∠CAH=45°,
    ∴△ACH为等腰直角三角形,
    ∴AH=CH=AC=×4=,
    在Rt△PHC中,PH=CH=,
    ∴PA=PH−AH=-,
    ∴BQ=−.
    【点睛】
    本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.

    相关试卷

    2024年江苏省苏州市高新区中考数学模拟试卷(含解析): 这是一份2024年江苏省苏州市高新区中考数学模拟试卷(含解析),共27页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2021-2022学年江苏省苏州市姑苏区中考数学模拟精编试卷含解析: 这是一份2021-2022学年江苏省苏州市姑苏区中考数学模拟精编试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    2021-2022学年【苏科版】江苏省苏州市姑苏区重点中学中考数学模拟精编试卷含解析: 这是一份2021-2022学年【苏科版】江苏省苏州市姑苏区重点中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题中真命题是,下列计算正确的是,剪纸是我国传统的民间艺术等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map