|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届山东省济宁市任城区中考四模数学试题含解析
    立即下载
    加入资料篮
    2022届山东省济宁市任城区中考四模数学试题含解析01
    2022届山东省济宁市任城区中考四模数学试题含解析02
    2022届山东省济宁市任城区中考四模数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省济宁市任城区中考四模数学试题含解析

    展开
    这是一份2022届山东省济宁市任城区中考四模数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,下列式子成立的有个,某种圆形合金板材的成本y等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.﹣22×3的结果是(  )
    A.﹣5 B.﹣12 C.﹣6 D.12
    2.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()
    A. B. C. D.
    3.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD; ②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是(  )

    A.4 B.1 C.2 D.3
    4.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正
    确的是(  )
    A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x1
    5.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为(  )

    A.99° B.109° C.119° D.129°
    6.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是( )
    A.相交 B.相切 C.相离 D.无法确定
    7.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了(  )

    A.25本 B.20本 C.15本 D.10本
    8.下列式子成立的有( )个
    ①﹣的倒数是﹣2
    ②(﹣2a2)3=﹣8a5
    ③()=﹣2
    ④方程x2﹣3x+1=0有两个不等的实数根
    A.1 B.2 C.3 D.4
    9.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )

    A.115° B.120° C.130° D.140°
    10.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为(  )
    A.18元 B.36元 C.54元 D.72元
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,则平移距离OO'长为____.

    12.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.

    13.请写出一个比2大且比4小的无理数:________.
    14.若反比例函数的图象与一次函数y=ax+b的图象交于点A(﹣2,m)、B(5,n),则3a+b的值等于_____.
    15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
    16.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”

    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.

    (Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
    (Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
    (Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
    18.(8分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.

    19.(8分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.
    (1)求证:△PMN是等腰三角形;
    (2)将△ADE绕点A逆时针旋转,
    ①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;
    ②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.

    20.(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).


    根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:
    若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
    21.(8分)先化简,再求值:,其中x满足x2﹣x﹣1=1.
    22.(10分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.
    23.(12分)用你发现的规律解答下列问题.



    ┅┅计算 .探究 .(用含有的式子表示)若的值为,求的值.
    24.如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C
    (1)若m=2,求点A和点C的坐标;
    (2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
    (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    先算乘方,再算乘法即可.
    【详解】
    解:﹣22×3=﹣4×3=﹣1.
    故选:B.
    【点睛】
    本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.
    2、B
    【解析】
    y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;
    y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;
    y=−的图象在二、四象限,故选项C错误;
    y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;
    故选B.
    3、D
    【解析】
    根据垂径定理,圆周角的性质定理即可作出判断.
    【详解】
    ∵P是弦AB的中点,CD是过点P的直径.
    ∴AB⊥CD,弧AD=弧BD,故①正确,③正确;
    ∠AOB=2∠AOD=4∠ACD,故②正确.
    P是OD上的任意一点,因而④不一定正确.
    故正确的是:①②③.
    故选:D.
    【点睛】
    本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
    4、B
    【解析】
    根据的图象上的三点,把三点代入可以得到x1=﹣ ,x1= ,x3=,在根据a的大小即可解题
    【详解】
    解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,
    ∴x1=﹣ ,x1= ,x3= ,
    ∵a<1,
    ∴a﹣1<0,
    ∴x1>x3>x1.
    故选B.
    【点睛】
    此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断
    5、B
    【解析】
    方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.
    【详解】
    解:由题意作图如下

    ∠DAC=46°,∠CBE=63°,
    由平行线的性质可得
    ∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,
    ∴∠ACB=∠ACF+∠BCF=46°+63°=109°,
    故选B.
    【点睛】
    本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.
    6、C
    【解析】
    首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若dr,则直线与与圆相离.
    【详解】
    ∵x2-4x-12=0,
    (x+2)(x-6)=0,
    解得:x1=-2(不合题意舍去),x2=6,
    ∵点O到直线l距离是方程x2-4x-12=0的一个根,即为6,
    ∴点O到直线l的距离d=6,r=5,
    ∴d>r,
    ∴直线l与圆相离.
    故选:C
    【点睛】
    本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.
    7、C
    【解析】
    设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
    【详解】
    解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
    根据题意,得:,
    解得:,
    答:甲种笔记本买了25本,乙种笔记本买了15本.
    故选C.
    【点睛】
    本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
    8、B
    【解析】
    根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.
    【详解】
    解:①﹣的倒数是﹣2,故正确;
    ②(﹣2a2)3=﹣8a6,故错误;
    ③(-)=﹣2,故错误;
    ④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.
    故选B.
    【点睛】
    考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.
    9、A
    【解析】
    解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.
    10、D
    【解析】
    设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
    【详解】
    解:根据题意设y=kπx2,
    ∵当x=3时,y=18,
    ∴18=kπ•9,
    则k=,
    ∴y=kπx2=•π•x2=2x2,
    当x=6时,y=2×36=72,
    故选:D.
    【点睛】
    本题考查了二次函数的应用,解答时求出函数的解析式是关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.
    【解析】
    直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案.
    【详解】
    ∵点 A(2,2)在双曲线上,
    ∴k=4,
    ∵平移后的线段O'A'与双曲线的交点 D 恰为 O'A'的中点,
    ∴D点纵坐标为:1,
    ∴DE=1,O′E=1,
    ∴D点横坐标为:x==4,
    ∴OO′=1,
    故答案为1.

    【点睛】
    本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键.
    12、1
    【解析】
    由n行有n个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.
    【详解】
    解:第1行1个数,第2行2个数,第3行3个数,…,
    ∴第9行9个数,
    ∴第10行第8个数为第1+2+3+…+9+8=1个数.
    又∵第2n﹣1个数为2n﹣1,第2n个数为﹣2n,
    ∴第10行第8个数应该是1.
    故答案为:1.
    【点睛】
    本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.
    13、(或)
    【解析】
    利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
    【详解】
    设无理数为,,所以x的取值在4~16之间都可,故可填
    【点睛】
    本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键
    14、0
    【解析】
    分析:本题直接把点的坐标代入解析式求得之间的关系式,通过等量代换可得到的值.
    详解:分别把A(−2,m)、B(5,n),
    代入反比例函数的图象与一次函数y=ax+b得
    −2m=5n,−2a+b=m,5a+b=n,
    综合可知5(5a+b)=−2(−2a+b),
    25a+5b=4a−2b,
    21a+7b=0,
    即3a+b=0.
    故答案为:0.
    点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础.
    15、
    【解析】
    根据弧长公式可得:=,
    故答案为.
    16、1
    【解析】
    本题主要考查了三角形的内角和定理.
    解:根据三角形的内角和可知填:1.

    三、解答题(共8题,共72分)
    17、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
    【解析】
    (1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
    (1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
    (3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
    【详解】
    (Ⅰ)设OD为x,
    ∵点A(3,0),点B(0,),
    ∴AO=3,BO=
    ∴AB=6
    ∵折叠
    ∴BD=DA
    在Rt△ADO中,OA1+OD1=DA1.
    ∴9+OD1=(﹣OD)1.
    ∴OD=
    ∴D(0,)
    (Ⅱ)∵折叠
    ∴∠BDC=∠CDO=90°
    ∴CD∥OA
    ∴且BD=AC,

    ∴BD=﹣18
    ∴OD=﹣(﹣18)=18﹣
    ∵tan∠ABO=,
    ∴∠ABC=30°,即∠BAO=60°
    ∵tan∠ABO=,
    ∴CD=11﹣6
    ∴D(11﹣6,11﹣18)
    (Ⅲ)如图:过点C作CE⊥AO于E

    ∵CE⊥AO
    ∴OE=1,且AO=3
    ∴AE=1,
    ∵CE⊥AO,∠CAE=60°
    ∴∠ACE=30°且CE⊥AO
    ∴AC=1,CE=
    ∵BC=AB﹣AC
    ∴BC=6﹣1=4
    若点B'落在A点右边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=1+
    ∴B'(1+,0)
    若点B'落在A点左边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=﹣1
    ∴B'(1﹣,0)
    综上所述:B'(1+,0),(1﹣,0)
    【点睛】
    本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
    18、证明见解析.
    【解析】
    【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.
    【详解】∵AB∥CD,∴∠A=∠D,
    ∵CE∥BF,∴∠AHB=∠DGC,
    在∆ABH和∆DCG中,

    ∴∆ABH≌∆DCG(AAS),∴AH=DG,
    ∵AH=AG+GH,DG=DH+GH,∴AG=HD.
    【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
    19、(1)见解析;(2)①见解析;②.
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;
    (2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;
    ②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论
    【详解】
    (1)如图1,∵点N,P是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形;
    (2)①如图2,∵∠DAE=∠BAC,
    ∴∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE,
    ∵点M、N、P分别是线段DE、BC、CD的中点,
    ∴PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形;
    ②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,

    ∵∠BAC=∠DAE,
    ∴∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△CAE,
    ∴BD=CE,
    如图4,连接AM,

    ∵M是DE的中点,N是BC的中点,AB=AC,
    ∴A、M、N共线,且AN⊥BC,
    由勾股定理得:AN==4,
    ∵AD=AE=1,AB=AC=6,
    ∴=,∠DAE=∠BAC,
    ∴△ADE∽△AEC,
    ∴,
    ∴,
    ∴AM=,DE=,
    ∴EM=,
    如图3,Rt△ACM中,CM===,
    ∴BD=CE=CM+EM=.
    【点睛】
    此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC
    20、(1),见解析;(2)125人;(3)
    【解析】
    (1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
    (2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
    (3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)解:(1)n=20-1-3-8-5=3;
    强化训练前的中位数,
    强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
    强化训练后的众数为8,
    故答案为3;7.5;8.3;8;

    (2)(人)
    (3)(3)画树状图为:

    共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,
    所以所抽取的两名同学恰好是一男一女的概率P=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
    21、2.
    【解析】
    根据分式的运算法则进行计算化简,再将x2=x+2代入即可.
    【详解】
    解:原式=×

    =,
    ∵x2﹣x﹣2=2,
    ∴x2=x+2,
    ∴==2.
    22、 (1) 现在平均每天生产1台机器.(2) 现在比原计划提前5天完成.
    【解析】
    (1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;
    (2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.
    【详解】
    解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台.
    依题意得:,
    解得:x=1.
    检验x=1是原分式方程的解.
    (2)由题意得=20-15=5(天)
    ∴现在比原计划提前5天完成.
    【点睛】
    此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
    23、解:(1);(2);(3)n=17.
    【解析】
    (1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.
    【详解】
    (1)原式=1−+−+−+−+−=1−=.
    故答案为;
    (2)原式=1−+−+−+…+−=1−=
    故答案为;
    (3) +++…+
    = (1−+−+−+…+−)
    =(1−)
    =
    =
    解得:n=17.
    考点:规律题.
    24、(1)A(4,0),C(3,﹣3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,﹣4);
    【解析】
    方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;
    (2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况, 利用勾股定理即可求得m的值;
    (3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,
    NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.
    方法二:(1)同方法一.
    (2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;
    (3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.
    【详解】
    方法一:
    解:
    (1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,
    ∴对称轴x=2,
    令y=0,则x2﹣4x=0,
    解得x=0,x=4,
    ∴A(4,0),
    ∵P(1,﹣2),令x=1,则y=﹣3,
    ∴B(1,﹣3),
    ∴C(3,﹣3).
    (2)∵抛物线y=x2﹣2mx(m>1),
    ∴A(2m,0)对称轴x=m,
    ∵P(1,﹣m)
    把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,
    ∴B(1,1﹣2m),
    ∴C(2m﹣1,1﹣2m),
    ∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,
    PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,
    AC2=1+(1﹣2m)2=2﹣4m+4m2,
    ∵△ACP为直角三角形,
    ∴当∠ACP=90°时,PA2=PC2+AC2,
    即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,
    解得:m=,m=1(舍去),
    当∠APC=90°时,PA2+PC2=AC2,
    即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,
    解得:m=,m=1,和1都不符合m>1,
    故m=.
    (3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,
    ∵∠FPN=∠PCB,∠PNF=∠CBP=90°,
    ∴Rt△FNP∽Rt△PBC,
    ∴NP:NF=BC:BP,即=,
    ∴y=2x﹣2﹣m,
    ∴直线PE的解析式为y=2x﹣2﹣m.
    令y=0,则x=1+,
    ∴E(1+m,0),
    ∴PE2=(﹣m)2+(m)2=,
    ∴=5m2﹣10m+5,解得:m=2,m=,
    ∴E(2,0)或E(,0),
    ∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);
    令x=0,则y=﹣2﹣m,
    ∴E(0,﹣2﹣m)
    ∴PE2=(﹣2)2+12=5
    ∴5m2﹣10m+5=5,解得m=2,m=0(舍去),
    ∴E(0,﹣4)
    ∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),
    ∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);
    方法二:
    (1)略.
    (2)∵P(1,﹣m),
    ∴B(1,1﹣2m),
    ∵对称轴x=m,
    ∴C(2m﹣1,1﹣2m),A(2m,0),
    ∵△ACP为直角三角形,
    ∴AC⊥AP,AC⊥CP,AP⊥CP,
    ①AC⊥AP,∴KAC×KAP=﹣1,且m>1,
    ∴,m=﹣1(舍)
    ②AC⊥CP,∴KAC×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=,
    ③AP⊥CP,∴KAP×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=(舍)
    (3)∵P(1,﹣m),C(2m﹣1,1﹣2m),
    ∴KCP=,
    △PEC是以P为直角顶点的等腰直角三角形,
    ∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,
    ∵P(1,﹣m),
    ∴lPE:y=2x﹣2﹣m,
    ∵点E在坐标轴上,
    ∴①当点E在x轴上时,
    E(,0)且PE=PC,
    ∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴m2=5(m﹣1)2,
    ∴m1=2,m2=,
    ∴E1(2,0),E2(,0),
    ②当点E在y轴上时,E(0,﹣2﹣m)且PE=PC,
    ∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴1=(m﹣1)2,
    ∴m1=2,m2=0(舍),
    ∴E(0,4),
    综上所述,(2,0)或(,0)或(0,﹣4).
    【点睛】
    本题主要考查二次函数的图象与性质.
    扩展:
    设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:
    AB=.
    设平面内直线AB的解析式为:,直线CD的解析式为:
    (1)若AB//CD,则有:;
    (2)若AB⊥CD,则有:.

    相关试卷

    2024年山东省济宁市任城区中考数学一模试卷(含解析): 这是一份2024年山东省济宁市任城区中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省济宁市任城区济宁学院附属中学二模数学试题(含解析): 这是一份2023年山东省济宁市任城区济宁学院附属中学二模数学试题(含解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省济宁市任城区中考数学二模试卷(含解析): 这是一份2023年山东省济宁市任城区中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map