02选择题基础题、提升题-浙江台州市五年(2018-2022)中考数学真题分类汇编
展开
这是一份02选择题基础题、提升题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共25页。
02选择题基础题、提升题-浙江台州市五年(2018-2022)中考数学真题分类汇编
一.完全平方公式
1.(2021•台州)已知(a+b)2=49,a2+b2=25,则ab=( )
A.24 B.48 C.12 D.2
二.列代数式(分式)
2.(2021•台州)将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖( )
A.20% B.×100%
C.×100% D.×100%
三.一元一次方程的应用
3.(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为( )
A.5 B.4 C.3 D.2
四.根的判别式
4.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m>2 B.m<2 C.m>4 D.m<4
五.函数的图象
5.(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是( )
A. B.
C. D.
六.动点问题的函数图象
6.(2020•台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是( )
A. B.
C. D.
七.线段的性质:两点之间线段最短
7.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是( )
A.两点之间,线段最短
B.垂线段最短
C.三角形两边之和大于第三边
D.两点确定一条直线
八.平行线的判定
8.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是( )
A.∠2=90° B.∠3=90° C.∠4=90° D.∠5=90°
九.平行线的性质
9.(2021•台州)一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=( )
A.40° B.43° C.45° D.47°
一十.矩形的性质
10.(2019•台州)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于( )
A. B. C. D.
一十一.正方形的判定与性质
11.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )
A.由②推出③,由③推出① B.由①推出②,由②推出③
C.由③推出①,由①推出② D.由①推出③,由③推出②
一十二.三角形的外接圆与外心
12.(2018•台州)如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是( )
A.△ADF≌△CGE
B.△B′FG的周长是一个定值
C.四边形FOEC的面积是一个定值
D.四边形OGB'F的面积是一个定值
一十三.切线的性质
13.(2019•台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为( )
A.2 B.3 C.4 D.4﹣
一十四.扇形面积的计算
14.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为( )
A.(840+6π)m2 B.(840+9π)m2 C.840m2 D.876m2
一十五.作图—基本作图
15.(2020•台州)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )
A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD
16.(2018•台州)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
一十六.命题与定理
17.(2022•台州)如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是( )
A.若AB=AC,AD⊥BC,则PB=PC
B.若PB=PC,AD⊥BC,则AB=AC
C.若AB=AC,∠1=∠2,则PB=PC
D.若PB=PC,∠1=∠2,则AB=AC
18.(2018•台州)下列命题正确的是( )
A.对角线相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
一十七.翻折变换(折叠问题)
19.(2021•台州)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为( )
A.(36)cm2 B.(36)cm2
C.24cm2 D.36cm2
20.(2020•台州)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为( )
A.7+3 B.7+4 C.8+3 D.8+4
一十八.图形的剪拼
21.(2019•台州)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为( )
A.:1 B.3:2 C.:1 D.:2
一十九.由三视图判断几何体
22.(2019•台州)如图是某几何体的三视图,则该几何体是( )
A.长方体 B.正方体 C.圆柱 D.球
二十.折线统计图
23.(2022•台州)从A,B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是( )
A.平均数 B.中位数 C.众数 D.方差
二十一.众数
24.(2018•台州)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
二十二.方差
25.(2021•台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,s12,则下列结论一定成立的是( )
A.< B.> C.s2>s12 D.s2<s12
26.(2019•台州)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的( )
A.最小值 B.平均数 C.中位数 D.众数
二十三.统计量的选择
27.(2020•台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是( )
A.中位数 B.众数 C.平均数 D.方差
参考答案与试题解析
一.完全平方公式
1.(2021•台州)已知(a+b)2=49,a2+b2=25,则ab=( )
A.24 B.48 C.12 D.2
【解答】解:(a+b)2=a2+2ab+b2,将a2+b2=25,(a+b)2=49代入,可得
2ab+25=49,
则2ab=24,
所以ab=12,
故选:C.
二.列代数式(分式)
2.(2021•台州)将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖( )
A.20% B.×100%
C.×100% D.×100%
【解答】解:由题意可得,
混合后的糖水含糖:×100%=×100%,
故选:D.
三.一元一次方程的应用
3.(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为( )
A.5 B.4 C.3 D.2
【解答】解:设两人相遇的次数为x,依题意有
x=100,
解得x=4.5,
∵x为整数,
∴x取4.
故选:B.
四.根的判别式
4.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m>2 B.m<2 C.m>4 D.m<4
【解答】解:根据题意得Δ=(﹣4)2﹣4m>0,
解得m<4.
故选:D.
五.函数的图象
5.(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是( )
A. B.
C. D.
【解答】解:吴老师从家出发匀速步行8min到公园,则y的值由400变为0,
吴老师在公园停留4min,则y的值仍然为0,
吴老师从公园匀速步行6min到学校,则在18分钟时,y的值为600,
故选:C.
六.动点问题的函数图象
6.(2020•台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是( )
A. B.
C. D.
【解答】解:由题意小球在左侧时,V=kt,
∴y=•t=kt2,
∴小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,
在右侧上升时,情形与左侧相反,
故选:C.
七.线段的性质:两点之间线段最短
7.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是( )
A.两点之间,线段最短
B.垂线段最短
C.三角形两边之和大于第三边
D.两点确定一条直线
【解答】解:从A地去往B地,打开导航、显示两地距离为37.7km,理由是两点之间线段最短,
故选:A.
八.平行线的判定
8.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是( )
A.∠2=90° B.∠3=90° C.∠4=90° D.∠5=90°
【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;
B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;
C.∵∠1=90°,∠4=90°,
∴∠1=∠4,
∴两条铁轨平行,故该选项符合题意;
D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;
故选:C.
九.平行线的性质
9.(2021•台州)一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=( )
A.40° B.43° C.45° D.47°
【解答】解:方法1:如图,∵∠1=47°,∠4=45°,
∴∠3=∠1+∠4=92°,
∵矩形对边平行,
∴∠5=∠3=92°,
∵∠6=45°,
∴∠2=180°﹣45°﹣92°=43°.
方法2:如图,作矩形两边的平行线,
∵矩形对边平行,
∴∠3=∠1=47°,
∵∠3+∠4=90°,
∴∠4=90°﹣47°=43°
∴∠2=∠4=43°.
故选:B.
一十.矩形的性质
10.(2019•台州)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于( )
A. B. C. D.
【解答】解:如图,
∵∠ADC=∠HDF=90°
∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°
∴△CDM≌△HDN(ASA)
∴MD=ND,且四边形DNKM是平行四边形
∴四边形DNKM是菱形
∴KM=DM
∵sinα=sin∠DMC=
∴当点B与点E重合时,两张纸片交叉所成的角a最小,
设MD=a=BM,则CM=8﹣a,
∵MD2=CD2+MC2,
∴a2=4+(8﹣a)2,
∴a=
∴CM=
∴tanα=tan∠DMC==
故选:D.
一十一.正方形的判定与性质
11.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )
A.由②推出③,由③推出① B.由①推出②,由②推出③
C.由③推出①,由①推出② D.由①推出③,由③推出②
【解答】解:对角线相等的四边形推不出是正方形或矩形,
故①→②,①→③错误,
故选项B,C,D错误,
故选:A.
一十二.三角形的外接圆与外心
12.(2018•台州)如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是( )
A.△ADF≌△CGE
B.△B′FG的周长是一个定值
C.四边形FOEC的面积是一个定值
D.四边形OGB'F的面积是一个定值
【解答】解:A、连接OA、OC,
∵点O是等边三角形ABC的外心,
∴点O是等边三角形ABC的内心,
∴AO平分∠BAC,
∴点O到AB、AC的距离相等,
由折叠得:DO平分∠BDB',
∴点O到AB、DB'的距离相等,
∴点O到DB'、AC的距离相等,
∴FO平分∠DFG,
∠DFO=∠OFG=(∠FAD+∠ADF),
由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),
∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,
∴∠DOF=60°,
同理可得∠EOG=60°,
∴∠FOG=60°=∠DOF=∠EOG,
∵OF=OF,OG=OG,
∴△DOF≌△GOF≌△GOE(ASA),
∴OD=OG,OE=OF,
∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,
∵OA=OA,∠AOD=∠COG,OD=OG,
∴△OAD≌△OCG(SAS),
同理得△OAF≌△OCE(SAS),
∴AD=CG,AF=CE,DF=EG,
∴△ADF≌△CGE(SSS),
故选项A正确;
B、∵△DOF≌△GOF≌△GOE,
∴DF=GF=GE,
∵∠A=∠B'=∠C=60°,∠AFD=∠B'FG,∠CGE=∠B'GF,
∴△ADF≌△B'GF≌△CGE(AAS),
∴B'G=AD,
∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),
故选项B正确;
C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),
故选项C正确;
D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S△OFG,
过O作OH⊥AC于H,
∴S△OFG=•FG•OH,
由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,
故选项D不一定正确;
故选:D.
一十三.切线的性质
13.(2019•台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为( )
A.2 B.3 C.4 D.4﹣
【解答】解:设⊙O与AC的切点为E,
连接AO,OE,
∵等边三角形ABC的边长为8,
∴AC=8,∠C=∠BAC=60°,
∵圆分别与边AB,AC相切,
∴∠BAO=∠CAO=BAC=30°,
∴∠AOC=90°,
∴OC=AC=4,
∵OE⊥AC,
∴OE=OC=2,
∴⊙O的半径为2,
故选:A.
一十四.扇形面积的计算
14.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为( )
A.(840+6π)m2 B.(840+9π)m2 C.840m2 D.876m2
【解答】解:如图,
该垃圾填埋场外围受污染土地的面积=80×3×2+60×3×2+32π
=(840+9π)m2.
故选:B.
一十五.作图—基本作图
15.(2020•台州)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )
A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD
【解答】解:由作图知AC=AD=BC=BD,
∴四边形ACBD是菱形,
∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,
不能判断AB=CD,
故选:D.
16.(2018•台州)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
【解答】解:∵由题意可知CE是∠BCD的平分线,
∴∠BCE=∠DCE.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DCE=∠E,∴∠BCE=∠AEC,
∴BE=BC=3,
∵AB=2,
∴AE=BE﹣AB=1,
故选:B.
一十六.命题与定理
17.(2022•台州)如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是( )
A.若AB=AC,AD⊥BC,则PB=PC
B.若PB=PC,AD⊥BC,则AB=AC
C.若AB=AC,∠1=∠2,则PB=PC
D.若PB=PC,∠1=∠2,则AB=AC
【解答】解:若AB=AC,AD⊥BC,则D是BC中点,
∴AP是BC的垂直平分线,
∴BP=PC,
∴故选项A是真命题,不符合题意;
AD⊥BC,即PD⊥BC,
又PB=PC,
∴AP是BC的垂直平分线,
∴AB=AC,
∴故选项B是真命题,不符合题意;
若AB=AC,∠1=∠2,则AD⊥BC,D是BC中点,
∴AP是BC的垂直平分线,
∴BP=PC,
∴故选项C是真命题,不符合题意;
若PB=PC,∠1=∠2,不能得到AB=AC,故选项D是假命题,符合题意;
故选:D.
18.(2018•台州)下列命题正确的是( )
A.对角线相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
【解答】解:对角线互相平分的四边形是平行四边形,A错误;
对角线相等的平行四边形是矩形,B错误;
对角线互相垂直的平行四边形是菱形,C正确;
对角线互相垂直且相等的平行四边形是正方形,D错误;
故选:C.
一十七.翻折变换(折叠问题)
19.(2021•台州)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为( )
A.(36)cm2 B.(36)cm2
C.24cm2 D.36cm2
【解答】解:根据翻折可知,
∠MAB=∠BAP,∠NAC=∠PAC,
∴∠BAC=∠PAB+∠PAC=(∠MAB+∠BAP+∠NAC+∠PAC)=180°=90°,
∵∠α=60°,
∴∠MAB=180°﹣∠BAC﹣∠α=180°﹣90°﹣60°=30°,
∴AB==6(cm),
AC==2(cm),
∴阴影部分的面积=S长方形﹣S△ABC=12×3﹣6×=(36﹣6)(cm2),
故选:A.
20.(2020•台州)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为( )
A.7+3 B.7+4 C.8+3 D.8+4
【解答】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.
由题意△EMN是等腰直角三角形,EM=EN=2,MN=2,
∵四边形EMHK是矩形,
∴EK=A′K=MH=1,KH=EM=2,
∵△RMH是等腰直角三角形,
∴RH=MH=1,RM=,同法可证NW=,
由题意AR=RA′=A′W=WD=4,
∴AD=AR+RM+MN+NW+DW=4++2++4=8+4,
故选:D.
一十八.图形的剪拼
21.(2019•台州)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为( )
A.:1 B.3:2 C.:1 D.:2
【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.
由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,
∴∠CDK=∠DKF=90°,DK=FK,DF=DK,
∴===(角平分线的性质定理,可以用面积法证明),
∴==,
∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,
故选:A.
一十九.由三视图判断几何体
22.(2019•台州)如图是某几何体的三视图,则该几何体是( )
A.长方体 B.正方体 C.圆柱 D.球
【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,
故该几何体是一个柱体,
又∵左视图是一个圆,
故该几何体是一个圆柱,
故选:C.
二十.折线统计图
23.(2022•台州)从A,B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是( )
A.平均数 B.中位数 C.众数 D.方差
【解答】解:由图可得,
=≈5,
=≈5,
故平均数不能反映出这两组数据之间差异,故选项A不符合题意;
A和B的中位数和众数都相等,故不能反映出这两组数据之间差异,故选项B和C不符合题意;
由图象可得,A种数据波动小,比较稳定,B种数据波动大,不稳定,能反映出这两组数据之间差异,故选项D符合题意;
故选:D.
二十一.众数
24.(2018•台州)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
【解答】解:将数据重新排列为17、18、18、20、20、20、23,
所以这组数据的众数为20分、中位数为20分,
故选:D.
二十二.方差
25.(2021•台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,s12,则下列结论一定成立的是( )
A.< B.> C.s2>s12 D.s2<s12
【解答】解:∵超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,
∴货架上原有鸡蛋的质量的方差s2>该顾客选购的鸡蛋的质量方差s12,而平均数无法比较.
故选:C.
26.(2019•台州)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的( )
A.最小值 B.平均数 C.中位数 D.众数
【解答】解:方差s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2]中“5”是这组数据的平均数,
故选:B.
二十三.统计量的选择
27.(2020•台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是( )
A.中位数 B.众数 C.平均数 D.方差
【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,
半数同学的成绩位于中位数或中位数以下,
小明成绩超过班级半数同学的成绩所用的统计量是中位数,
故选:A.
相关试卷
这是一份01选择题容易题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共12页。
这是一份06解答题提升题、压轴题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共28页。试卷主要包含了提升题,压轴题等内容,欢迎下载使用。
这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题,共28页。