2021-2022学年江苏省镇江市外国语初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )
A. B. C. D.
2.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )
A.0.1 B.0.2
C.0.3 D.0.4
3.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正
确的是( )
A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x1
4.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为( )
A.8cm B.4cm C.4cm D.5cm
5.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )
A.80° B.90° C.100° D.102°
6.如图,AB与⊙O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的长是( )
A. B. C. D.
7.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B. C. D.
8.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )
A.1 B.2 C.3 D.4
9.下列图形中,是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
10.如图,,则的度数为( )
A.115° B.110° C.105° D.65°
11.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
A. B. C. D.
12.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:=_____________.
14.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.
15.如图,BC=6,点A为平面上一动点,且∠BAC=60°,点O为△ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是_____
16.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.
17.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.
18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则an=__________(用含n的代数式表示).
所剪次数
1
2
3
4
…
n
正三角形个数
4
7
10
13
…
an
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
20.(6分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.
21.(6分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
22.(8分)(1)解不等式组:;
(2)解方程:.
23.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.
24.(10分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.
(1)求该抛物线的解析式和顶点坐标;
(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.
①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;
②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).
25.(10分) “知识改变命运,科技繁荣祖国”.在举办一届全市科技运动会上.下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:
(1)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 ;
(2)并把条形统计图补充完整;
(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?
26.(12分)列方程解应用题:
为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
27.(12分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.
(1)计算:若十字框的中间数为17,则a+b+c+d=______.
(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;
(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;
(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
作出树状图即可解题.
【详解】
解:如下图所示
一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,
故选A.
【点睛】
本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.
2、B
【解析】
∵在5.5~6.5组别的频数是8,总数是40,
∴=0.1.
故选B.
3、B
【解析】
根据的图象上的三点,把三点代入可以得到x1=﹣ ,x1= ,x3=,在根据a的大小即可解题
【详解】
解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,
∴x1=﹣ ,x1= ,x3= ,
∵a<1,
∴a﹣1<0,
∴x1>x3>x1.
故选B.
【点睛】
此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断
4、C
【解析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
【详解】
解:连接OC,如图所示:
∵AB是⊙O的直径,弦CD⊥AB,
∴
∵OA=OC,
∴∠A=∠OCA=22.5°,
∵∠COE为△AOC的外角,
∴∠COE=45°,
∴△COE为等腰直角三角形,
∴
故选:C.
【点睛】
此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
5、A
【解析】
分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
详解:∵AB∥CD.
∴∠A=∠3=40°,
∵∠1=60°,
∴∠2=180°∠1−∠A=80°,
故选:A.
点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
6、B
【解析】
解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为=π.故选B.
点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.
7、C
【解析】
分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选:C.
点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
8、C
【解析】
分析:
过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.
详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;
综上所述,符合要求的半径为2的圆共有3个.
故选C.
点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
9、A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,
故选A.
【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.
10、A
【解析】
根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.
【详解】
∵∠AFD=65°,
∴∠CFB=65°,
∵CD∥EB,
∴∠B=180°−65°=115°,
故选:A.
【点睛】
本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.
11、D
【解析】
试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
试题解析:画树状图如下:
共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
故选D.
考点:列表法与树状法.
12、A
【解析】
根据平行线分线段成比例定理逐项分析即可.
【详解】
A.∵,
∴,,
∴,故A正确;
B. ∵,
∴,故B不正确;
C. ∵,
∴ ,故C不正确;
D. ∵,
∴,故D不正确;
故选A.
【点睛】
本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.
详解:
原式=.
故答案为:.
点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.
14、四丈五尺
【解析】
根据同一时刻物高与影长成正比可得出结论.
【详解】
解:设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴=,
解得x=45(尺).
故答案为:四丈五尺.
【点睛】
本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.
15、
【解析】
试题分析:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P在以BC为直径的圆上,∵外心为O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以OP的最小值是.故答案为.
考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.
16、1
【解析】
首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.
【详解】
如图:
,
连接BE,
∵四边形BCED是正方形,
∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,
∴BF=CF,
根据题意得:AC∥BD,
∴△ACP∽△BDP,
∴DP:CP=BD:AC=1:3,
∴DP:DF=1:1,
∴DP=PF=CF=BF,
在Rt△PBF中,tan∠BPF==1,
∵∠APD=∠BPF,
∴tan∠APD=1.
故答案为:1
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
17、
【解析】
试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.
由题意得圆锥的母线长
则所得到的侧面展开图形面积.
考点:勾股定理,圆锥的侧面积公式
点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.
18、3n+1.
【解析】
试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.
试题解析:故剪n次时,共有4+3(n-1)=3n+1.
考点:规律型:图形的变化类.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
20、可以求出A、B之间的距离为111.6米.
【解析】
根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.
【详解】
解:∵,(对顶角相等),
∴,
∴,
∴,
解得米.
所以,可以求出、之间的距离为米
【点睛】
考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.
21、 (Ⅰ)B(3,0);C(0,3);(Ⅱ)为直角三角形;(Ⅲ).
【解析】
(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标.
(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形.
(3)△COB沿x轴向右平移过程中,分两个阶段:
①当0<t≤时,如答图2所示,此时重叠部分为一个四边形;
②当<t<3时,如答图3所示,此时重叠部分为一个三角形.
【详解】
解:(Ⅰ)∵点在抛物线上,
∴,得
∴抛物线解析式为:,
令,得,∴;
令,得或,∴.
(Ⅱ)为直角三角形.理由如下:
由抛物线解析式,得顶点的坐标为.
如答图1所示,过点作轴于点M,
则,,.
过点作于点,则,.
在中,由勾股定理得:;
在中,由勾股定理得:;
在中,由勾股定理得:.
∵,
∴为直角三角形.
(Ⅲ)设直线的解析式为,
∵,
∴,
解得,
∴,
直线是直线向右平移个单位得到,
∴直线的解析式为:;
设直线的解析式为,
∵,
∴,解得:,
∴.
连续并延长,射线交交于,则.
在向右平移的过程中:
(1)当时,如答图2所示:
设与交于点,可得,.
设与的交点为,则:.
解得,
∴.
.
(2)当时,如答图3所示:
设分别与交于点、点.
∵,
∴,.
直线解析式为,令,得,
∴.
.
综上所述,与的函数关系式为:.
22、(1)﹣2≤x<2;(2)x=.
【解析】
(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;
(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.
【详解】
(1),
∵解不等式①得:x<2,
解不等式②得:x≥﹣2,
∴不等式组的解集为﹣2≤x<2;
(2)方程两边都乘以(2x﹣1)(x﹣2)得
2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),
解得:x=,
检验:把x=代入(2x﹣1)(x﹣2)≠0,
所以x=是原方程的解,
即原方程的解是x=.
【点睛】
本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.
23、(1)证明见解析(2)3
【解析】
试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
试题解析:(1)∵四边形ABCD是平行四边形,
∴DC∥AB,即DF∥EB.
又∵DF=BE,
∴四边形DEBF是平行四边形.
∵DE⊥AB,
∴∠EDB=90°.
∴四边形DEBF是矩形.
(2)∵四边形DEBF是矩形,
∴DE=BF=4,BD=DF.
∵DE⊥AB,
∴AD===1.
∵DC∥AB,
∴∠DFA=∠FAB.
∵AF平分∠DAB,
∴∠DAF=∠FAB.
∴∠DAF=∠DFA.
∴DF=AD=1.
∴BE=1.
∴AB=AE+BE=3+1=2.
∴S□ABCD=AB·BF=2×4=3.
24、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);
【解析】
1)把0(0,0),A(4,4v3)的坐标代入
y=﹣x2+bx+c,转化为解方程组即可.
(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.
(3)①如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.
②如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.
【详解】
(1)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,
得,
解得,
∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.
所以抛物线的顶点坐标为(,);
(2)①由题意B(5,0),A(4,4),
∴直线OA的解析式为y=x,AB==7,
∵抛物线的对称轴x=,
∴P(,).
如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,
∵QC∥OB,
∴∠CQB=∠QBO=∠QBC,
∴CQ=BC=OB=5,
∴四边形BOQC是平行四边形,
∵BO=BC,
∴四边形BOQC是菱形,
设Q(m,),
∴OQ=OB=5,
∴m2+()2=52,
∴m=±,
∴点Q坐标为(﹣,)或(,);
②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.
∵AB=7,BD=5,
∴AD=2,D(,),
∵OH=HD,
∴H(,),
∴直线BH的解析式为y=﹣x+,
当y=时,x=0,
∴Q(0,).
【点睛】
本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对.
25、(1)24,120°;(2)见解析;(3)1000人
【解析】
(1)由建模的人数除以占的百分比,求出调查的总人数即可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果.
【详解】
解:(1)该校参加航模比赛的总人数是6÷25%=24(人),
则参加空模人数为24﹣(6+4+6)=8(人),
∴空模所在扇形的圆心角的度数是360°×=120°,
故答案为:24,120°;
(2)补全条形统计图如下:
(3)估算今年参加航模比赛的获奖人数约是2500×=1000(人).
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
26、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【解析】
设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
【详解】
解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
根据题意得:
解得:x=1.
经检验:x=1是原方程的解且符合实际问题的意义.
∴1.2x=1.2×1=2.
答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【点睛】
此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
27、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.
【解析】
(1)直接相加即得到答案;
(2)根据(1)猜想a+b+c+d=4x;
(3)用x表示a、b、c、d,相加后即等于4x;
(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.
【详解】
(1)5+15+19+29=68,
故答案为68;
(2)根据(1)猜想a+b+c+d=4x,
答案为:4倍;
(3)a=x-12,b=x-2,c=x+2,d=x+12,
∴a+b+c+d=x-12+x-2+x+2+x+12=4x,
∴猜想正确;
(4)M=a+b+c+d+x=4x+x=5x,
若M=5x=1,解得:x=404,
但整个数表所有的数都为奇数,故不成立,
∴M的值不能等于1.
【点睛】
本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.
江苏省南通市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省南通市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了二次函数y=ax2+bx﹣2,图为小明和小红两人的解题过程,下列计算中,正确的是等内容,欢迎下载使用。
河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。
2022年江苏省镇江市丹徒区、句容区初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年江苏省镇江市丹徒区、句容区初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,计算3的结果是等内容,欢迎下载使用。