2021-2022学年江苏省徐州市新沂市初中数学毕业考试模拟冲刺卷含解析
展开
这是一份2021-2022学年江苏省徐州市新沂市初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了答题时请按要求用笔,若△÷,则“△”可能是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )
A. B. C. D.
2.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为( )
A.35.578×103 B.3.5578×104
C.3.5578×105 D.0.35578×105
3.抛物线y=x2+2x+3的对称轴是( )
A.直线x=1 B.直线x=-1
C.直线x=-2 D.直线x=2
4.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
5.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )
A. B. C. D.
6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
A.12米 B.4米 C.5米 D.6米
7.若△÷,则“△”可能是( )
A. B. C. D.
8.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )
A.正方体 B.球 C.圆锥 D.圆柱体
9.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为( )
A.54° B.36° C.30° D.27°
10.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为( )
A. B.π C.2π D.3π
二、填空题(本大题共6个小题,每小题3分,共18分)
11.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“
【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
【详解】
解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案为:>.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
12、1
【解析】
由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.
【详解】
解:∵两圆的半径分别为2和5,两圆内切,
∴d=R﹣r=5﹣2=1cm,
故答案为1.
【点睛】
此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.
13、
【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
【详解】
由根与系数的关系得:m+n=,mn=,
∴m2+n2=(m+n)2-2mn=()2-2×=,
故答案为:.
【点睛】
本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
14、B
【解析】
过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.
【详解】
解:过P点作PE⊥BP,垂足为P,交BC于E,
∵AP垂直∠B的平分线BP于P,
∠ABP=∠EBP,
又知BP=BP,∠APB=∠BPE=90°,
∴△ABP≌△BEP,
∴AP=PE,
∵△APC和△CPE等底同高,
∴S△APC=S△PCE,
∴三角形PBC的面积=三角形ABC的面积=cm1,
选项中只有B的长方形面积为cm1,
故选B.
15、(+896)π.
【解析】
由圆弧的弧长公式及正△ABO翻滚的周期性可得出答案.
【详解】
解:如图
作⊥x轴于E, 易知OE=5, ,,
观察图象可知3三次一个循环,一个循环点M的运动路径为=
=,
翻滚2017次后AB中点M经过的路径长为,
故答案:
【点睛】
本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键.
16、.
【解析】
试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
【点睛】
本题考查概率公式,掌握图形特点是解题关键,难度不大.
三、解答题(共8题,共72分)
17、(1)证明见解析(2)3
【解析】
(1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
(2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
【详解】
相切,连接,
∵为的中点,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴直线与相切;
方法:连接,
∵,,
∵,
∴,
∵是的切线,
∴,
∴,
∴,
∵为的中点,
∴,
∵为的直径,
∴,
∴.
方法:∵,
易得,
∴,
∴.
【点睛】
本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
18、(1)5,20,80;(2)图见解析;(3).
【解析】
【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;
(2)用乒乓球的人数除以总人数即可得;
(3)用800乘以喜欢篮球人数所占的比例即可得;
(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;
(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.
【详解】(1)调查的总人数为20÷40%=50(人),
喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);
(2)“乒乓球”的百分比==20%;
(3)800×=80,
所以估计全校学生中有80人喜欢篮球项目;
(4)如图所示,
(5)画树状图为:
共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=.
19、(1)任意实数;(2);(3)见解析;(4)①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.
【解析】
(1)没有限定要求,所以x为任意实数,
(2)把x=3代入函数解析式即可,
(3)描点,连线即可解题,
(4)看图确定极点坐标,即可找到增减区间.
【详解】
解:(1)函数y=﹣2x的自变量x的取值范围是任意实数;
故答案为任意实数;
(2)把x=3代入y=﹣2x得,y=﹣;
故答案为﹣;
(3)如图所示;
(4)根据图象得,①当x<﹣2时,y随x的增大而增大;
②当x>2时,y随x的增大而增大.
故答案为①当x<﹣2时,y随x的增大而增大;
②当x>2时,y随x的增大而增大.
【点睛】
本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.
20、 (1)证明见解析;(2)1.
【解析】
(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.
(2)利用相似三角形的性质得到,由此即可证明.
【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,
∵,∴△ADF∽△ACG.
(2)解:∵△ADF∽△ACG,∴,
又∵,∴,
∴1.
21、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.
【解析】
(1)利用频率估计概率结合表格中数据得出答案即可;
(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.
【详解】
解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,
故出现“和为8”的概率是0.33.
(2)x的值不能为7.理由:假设x=7,
则P(和为9)=≠,所以x的值不能为7.
【点睛】
此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.
22、(1)见解析;(2)⊙O直径的长是4.
【解析】
(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.
【详解】
证明:(1)连接BD,交AC于F,
∵DC⊥BE,
∴∠BCD=∠DCE=90°,
∴BD是⊙O的直径,
∴∠DEC+∠CDE=90°,
∵∠DEC=∠BAC,
∴∠BAC+∠CDE=90°,
∵弧BC=弧BC,
∴∠BAC=∠BDC,
∴∠BDC+∠CDE=90°,
∴BD⊥DE,
∴DE是⊙O切线;
解:(2)∵AC∥DE,BD⊥DE,
∴BD⊥AC.
∵BD是⊙O直径,
∴AF=CF,
∴AB=BC=8,
∵BD⊥DE,DC⊥BE,
∴∠BCD=∠BDE=90°,∠DBC=∠EBD,
∴△BDC∽△BED,
∴=,
∴BD2=BC•BE=8×10=80,
∴BD=4.
即⊙O直径的长是4.
【点睛】
此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.
23、(1)DD′=1,A′F= 4﹣;(2);(1).
【解析】
(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;
②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;
(2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;
(1)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
【详解】
解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',
∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.
∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,
∴DD′=CD=1.
②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,
∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.
在Rt△CD′F中,∵tan∠D′CF=,
∴D′F=,∴A′F=A′D′﹣D′F=4﹣.
(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,
∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,
∴△A′DF∽△A′D′C,∴,∴,
∴DF=.
同理可得△CDE∽△CB′A′,∴,∴,
∴ED=,∴EF=ED+DF=.
(1)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1.
∵S△CEF=•EF•DC=•CE•FG,
∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.
∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,
∴AC2=AD•AF,∴AF=.
∵S△ACF=•AC•CF=•AF•CD,
∴AC•CF=AF•CD=.
24、(1)详见解析;(2)①67.5°;②90°.
【解析】
(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
②根据四边形BFDP是正方形,可以求得∠DAE的度数.
【详解】
(1)证明:连接OD,如图所示,
∵射线DC切⊙O于点D,
∴OD⊥CD,
即∠ODF=90°,
∵∠AED=45°,
∴∠AOD=2∠AED=90°,
∴∠ODF=∠AOD,
∴CD∥AB;
(2)①连接AF与DP交于点G,如图所示,
∵四边形ADFP是菱形,∠AED=45°,OA=OD,
∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
∴∠AGE=90°,∠DAO=45°,
∴∠EAG=45°,∠DAG=∠PEG=22.5°,
∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
故答案为:67.5°;
②∵四边形BFDP是正方形,
∴BF=FD=DP=PB,
∠DPB=∠PBF=∠BFD=∠FDP=90°,
∴此时点P与点O重合,
∴此时DE是直径,
∴∠EAD=90°,
故答案为:90°.
【点睛】
本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
相关试卷
这是一份江苏省南通市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了二次函数y=ax2+bx﹣2,图为小明和小红两人的解题过程,下列计算中,正确的是等内容,欢迎下载使用。
这是一份江苏省江阴市夏港中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共25页。试卷主要包含了的倒数是等内容,欢迎下载使用。
这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。