![2022届广西自治区北部湾四市重点中学中考联考数学试题含解析第1页](http://m.enxinlong.com/img-preview/2/3/13315294/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届广西自治区北部湾四市重点中学中考联考数学试题含解析第2页](http://m.enxinlong.com/img-preview/2/3/13315294/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届广西自治区北部湾四市重点中学中考联考数学试题含解析第3页](http://m.enxinlong.com/img-preview/2/3/13315294/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届广西自治区北部湾四市重点中学中考联考数学试题含解析
展开
这是一份2022届广西自治区北部湾四市重点中学中考联考数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )
A. B.
C. D.
2.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( )
A.13,5 B.6.5,3 C.5,2 D.6.5,2
3.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是( )
A.15° B.30° C.45° D.60°
4.化简的结果是( )
A. B. C. D.
5.如图,在平行四边形ABCD中,都不一定 成立的是( )
①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.
A.①和④ B.②和③ C.③和④ D.②和④
6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A.60° B.50° C.40° D.30°
7.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为( )
A.40° B.45° C.50° D.55°
8.下列图形中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
9.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )
A.向左平移1个单位 B.向右平移3个单位
C.向上平移3个单位 D.向下平移1个单位
10.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是( )
A.+3 B.4 C.5 D.3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.
12.一元二次方程x﹣1=x2﹣1的根是_____.
13.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.
14.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.
16.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.
三、解答题(共8题,共72分)
17.(8分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图①,连接AD,若,求∠B的大小;如图②,若点F为的中点,的半径为2,求AB的长.
18.(8分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值.
19.(8分)计算:
(1)
(2)
20.(8分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).
21.(8分)如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.
(1)求证:≌;
(2)当时,求四边形AECF的面积.
22.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.
23.(12分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.
(1)求证:四边形OBCP是平行四边形;
(2)填空:
①当∠BOP= 时,四边形AOCP是菱形;
②连接BP,当∠ABP= 时,PC是⊙O的切线.
24.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=______,连接OF;
(3)在CD边上取点G,使CG=______,连接OG;
(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.
【详解】
解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
故选D.
点评:本题考核立意相对较新,考核了学生的空间想象能力.
2、D
【解析】
根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,
【详解】
解:如下图,
∵△ABC的三条边长分别是5,13,12,且52+122=132,
∴△ABC是直角三角形,
其斜边为外切圆直径,
∴外切圆半径==6.5,
内切圆半径==2,
故选D.
【点睛】
本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.
3、B
【解析】
只要证明△OCB是等边三角形,可得∠CDB=∠COB即可解决问题.
【详解】
如图,连接OC,
∵AB=14,BC=1,
∴OB=OC=BC=1,
∴△OCB是等边三角形,
∴∠COB=60°,
∴∠CDB=∠COB=30°,
故选B.
【点睛】
本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.
4、D
【解析】
将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.
【详解】
原式=×=×(+1)=2+.
故选D.
【点睛】
本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.
5、D
【解析】
∵四边形ABCD是平行四边形,
∴AO=CO,故①成立;
AD∥BC,故③成立;
利用排除法可得②与④不一定成立,
∵当四边形是菱形时,②和④成立.
故选D.
6、C
【解析】
试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.
考点:平行线的性质.
7、C
【解析】
根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.
【详解】
∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=∠BOC=50°
故选:C.
【点睛】
考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.
8、B
【解析】
解:第一个图是轴对称图形,又是中心对称图形;
第二个图是轴对称图形,不是中心对称图形;
第三个图是轴对称图形,又是中心对称图形;
第四个图是轴对称图形,不是中心对称图形;
既是轴对称图形,又是中心对称图形的有2个.故选B.
9、D
【解析】
A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;
B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;
C.平移后,得y=x2+3,图象经过A点,故C不符合题意;
D.平移后,得y=x2−1图象不经过A点,故D符合题意;
故选D.
10、C
【解析】
过点C作,且CQ=CP,连接AQ,PQ,证明≌根据全等三角形的性质,得到 根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.
【详解】
过点C作,且CQ=CP,连接AQ,PQ,
在和中
≌
AP的最大值是5.
故选:C.
【点睛】
考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
∵AB=AC,AD⊥BC,
∴BD=CD=2,
∵BE、AD分别是边AC、BC上的高,
∴∠ADC=∠BEC=90°,
∵∠C=∠C,
∴△ACD∽△BCE,
∴,
∴,
∴CE=,
故答案为.
12、x=0或x=1.
【解析】
利用因式分解法求解可得.
【详解】
∵(x﹣1)﹣(x+1)(x﹣1)=0,
∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
则x=0或x=1,
故答案为:x=0或x=1.
【点睛】
本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
13、
【解析】
利用特殊三角形的三边关系,求出AM,AE长,求比值.
【详解】
解:如图所示,设BC=x,
∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB=BC=x,
根据题意得:AD=BC=x,AE=DE=AB=x,
如图,作EM⊥AD于M,则AM=AD=x,
在Rt△AEM中,cos∠EAD=,
故答案为:.
【点睛】
特殊三角形: 30°-60°-90°特殊三角形,三边比例是1::2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.
14、
【解析】
分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
详解:∵平均数是12,
∴这组数据的和=12×7=84,
∴被墨汁覆盖三天的数的和=84−4×12=36,
∵这组数据唯一众数是13,
∴被墨汁覆盖的三个数为:10,13,13,
故答案为
点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
15、1
【解析】
试题分析:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.
16、5
【解析】
根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.
【详解】
解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,
所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,
则=,解得x=3,
所以另一段长为18-3=15,
因为15÷3=5,所以是第5张.
故答案为:5.
【点睛】
本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.
三、解答题(共8题,共72分)
17、 (1)∠B=40°;(2)AB= 6.
【解析】
(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;
(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.
【详解】
解:(1)如解图①,连接OD,
∵BC切⊙O于点D,
∴∠ODB=90°,
∵∠C=90°,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠DAO=∠ADO=∠CAD=25°,
∴∠DOB=∠CAO=∠CAD+∠DAO=50°,
∵∠ODB=90°,
∴∠B=90°-∠DOB=90°-50°=40°;
(2)如解图②,连接OF,OD,
∵AC∥OD,
∴∠OFA=∠FOD,
∵点F为弧AD的中点,
∴∠AOF=∠FOD,
∴∠OFA=∠AOF,
∴AF=OA,
∵OA=OF,
∴△AOF为等边三角形,
∴∠FAO=60°,则∠DOB=60°,
∴∠B=30°,
∵在Rt△ODB中,OD=2,
∴OB=4,
∴AB=AO+OB=2+4=6.
【点睛】
本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.
18、(1)7000辆;(2)a的值是1.
【解析】
(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;
(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.
【详解】
解:(1)设一月份该公司投入市场的自行车x辆,
x﹣(7500﹣110)≥10%x,
解得x≥7000,
答:一月份该公司投入市场的自行车至少有7000辆;
(2)由题意可得,
[7500×(1﹣1%)+110(1+4a%)](1﹣a%)=7752,
化简,得
a2﹣250a+4600=0,
解得:a1=230,a2=1,
∵,
解得a<80,
∴a=1,
答:a的值是1.
【点睛】
本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.
19、(1);(2)1.
【解析】
(1)根据二次根式的混合运算法则即可;
(2)根据特殊角的三角函数值即可计算.
【详解】
解:(1)原式=
;
(2)原式
.
【点睛】
本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.
20、(6+2)米
【解析】
根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.
【详解】
由题意可知∠BAD=∠ADB=45°,
∴FD=EF=6米,
在Rt△PEH中,
∵tanβ==,
∴BF==5,
∴PG=BD=BF+FD=5+6,
∵tanβ= ,
∴CG=(5+6)·=5+2,
∴CD=(6+2)米.
【点睛】
本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
21、(1)见解析;(2)
【解析】
(1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;
(2)求出△ABE是等边三角形,求出高AH的长,再求出面积即可.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴,,,
∵点E、F分别是BC、AD的中点,
∴,,
∴,
在和中
,
∴≌();
(2)作于H,
∵四边形ABCD是平行四边形,
∴,,
∵点E、F分别是BC、AD的中点,,
∴,,
∴,,
∴四边形AECF是平行四边形,
∵,
∴四边形AECF是菱形,
∴,
∵,
∴,
即是等边三角形,
,
由勾股定理得:,
∴四边形AECF的面积是.
【点睛】
本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
22、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
【解析】
(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
解:(1)把点A(1,a)代入一次函数y=﹣x+4,
得a=﹣1+4,
解得a=3,
∴A(1,3),
点A(1,3)代入反比例函数y=,
得k=3,
∴反比例函数的表达式y=,
(2)把B(3,b)代入y=得,b=1
∴点B坐标(3,1);
作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
∴D(3,﹣1),
设直线AD的解析式为y=mx+n,
把A,D两点代入得,, 解得m=﹣2,n=1,
∴直线AD的解析式为y=﹣2x+1,
令y=0,得x=,
∴点P坐标(,0),
(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
23、 (1)见解析;(2)①120°;②45°
【解析】
(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;
(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.
【详解】
(1)∵PC∥AB,
∴∠PCM=∠OAM,∠CPM=∠AOM.
∵点M是OP的中点,
∴OM=PM,在△CPM和△AOM中,
,
∴△CPM≌△AOM(AAS),
∴PC=OA.
∵AB是半圆O的直径,
∴OA=OB,
∴PC=OB.
又PC∥AB,
∴四边形OBCP是平行四边形.
(2)①∵四边形AOCP是菱形,
∴OA=PA,
∵OA=OP,
∴OA=OP=PA,
∴△AOP是等边三角形,
∴∠A=∠AOP=60°,
∴∠BOP=120°;
故答案为120°;
②∵PC是⊙O的切线,
∴OP⊥PC,∠OPC=90°,
∵PC∥AB,
∴∠BOP=90°,
∵OP=OB,
∴△OBP是等腰直角三角形,
∴∠ABP=∠OPB=45°,
故答案为45°.
【点睛】
本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.
24、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA
【解析】
利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH
=HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.
【详解】
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=3,连接OF;
(3)在CD边上取点G,使CG=2,连接OG;
(4)在DA边上取点H,使DH=1,连接OH.
由于AE=EB+BF=FC+CG=GD+DH=HA.
可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.
【点睛】
此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.
相关试卷
这是一份广西自治区北部湾四市2021-2022学年中考适应性考试数学试题含解析,共21页。试卷主要包含了二次函数y=ax2+bx﹣2等内容,欢迎下载使用。
这是一份2022年郑州市重点中学中考联考数学试题含解析,共20页。试卷主要包含了如图所示的几何体的左视图是,某校八,如果将直线l1等内容,欢迎下载使用。
这是一份2022年广西北部湾经济区四市同城重点中学中考联考数学试卷含解析,共20页。试卷主要包含了计算4+,方程的解为等内容,欢迎下载使用。