2022年郑州市重点中学中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.设α,β是一元二次方程x2+2x-1=0的两个根,则αβ的值是( )
A.2 B.1 C.-2 D.-1
2.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是( )
A. B. C. D.
3.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是
A. B. C. D.3
4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )
A.= B.= C.= D.=
5.如图所示的几何体的左视图是( )
A. B. C. D.
6.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2) B.(2,4),(3,1)
C.(2,2),(3,1) D.(3,1),(2,2)
7.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是( )
A.38 B.39 C.40 D.42
8.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
A.20 B.15 C.10 D.5
9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31° B.28° C.62° D.56°
10.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是( )
A.将l1向左平移2个单位 B.将l1向右平移2个单位
C.将l1向上平移2个单位 D.将l1向下平移2个单位
11.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为( )
A.米 B.30sinα米 C.30tanα米 D.30cosα米
12.如果a﹣b=5,那么代数式(﹣2)•的值是( )
A.﹣ B. C.﹣5 D.5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.
14.已知(x-ay)(x+ay),那么a=_______
15.矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=_____.
16.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.
17.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .
18.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
20.(6分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)
21.(6分)计算:2tan45°-(-)º-
22.(8分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:
图1 各项报名人数扇形统计图:
图2 各项报名人数条形统计图:
根据以上信息解答下列问题:
(1)学生报名总人数为 人;
(2)如图1项目D所在扇形的圆心角等于 ;
(3)请将图2的条形统计图补充完整;
(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.
23.(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).
(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.
(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.
24.(10分)如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
25.(10分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.
成绩分组
组中值
频数
25≤x<30
27.5
4
30≤x<35
32.5
m
35≤x<40
37.5
24
40≤x<45
a
36
45≤x<50
47.5
n
50≤x<55
52.5
4
(1)求a、m、n的值,并补全频数分布直方图;
(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?
26.(12分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
27.(12分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D.
考点:根与系数的关系.
2、B
【解析】
分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.
详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
故选B.
点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.
3、B
【解析】
如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
【详解】
解:如图,AB的中点即数轴的原点O.
根据数轴可以得到点A表示的数是.
故选:B.
【点睛】
此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.
4、D
【解析】
根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.
【详解】
解:当或时,,
即或.
所以D选项是正确的.
【点睛】
本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.
5、A
【解析】
本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.
6、C
【解析】
直接利用位似图形的性质得出对应点坐标乘以得出即可.
【详解】
解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
∴端点的坐标为:(2,2),(3,1).
故选C.
【点睛】
本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
7、B
【解析】
根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
【详解】
解:由于共有6个数据,
所以中位数为第3、4个数的平均数,即中位数为=39,
故选:B.
【点睛】
本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
8、B
【解析】
∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B
9、D
【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.
【详解】
解:∵四边形ABCD为矩形,
∴AD∥BC,∠ADC=90°,
∵∠FDB=90°-∠BDC=90°-62°=28°,
∵AD∥BC,
∴∠CBD=∠FDB=28°,
∵矩形ABCD沿对角线BD折叠,
∴∠FBD=∠CBD=28°,
∴∠DFE=∠FBD+∠FDB=28°+28°=56°.
故选D.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
10、C
【解析】
根据“上加下减”的原则求解即可.
【详解】
将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
故选:C.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
11、C
【解析】
试题解析:在Rt△ABO中,
∵BO=30米,∠ABO为α,
∴AO=BOtanα=30tanα(米).
故选C.
考点:解直角三角形的应用-仰角俯角问题.
12、D
【解析】
【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.
【详解】(﹣2)•
=
=
=a-b,
当a-b=5时,原式=5,
故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、﹣1<x<2
【解析】
根据图象得出取值范围即可.
【详解】
解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
所以当y1>y2时,﹣1<x<2,
故答案为﹣1<x<2
【点睛】
此题考查二次函数与不等式,关键是根据图象得出取值范围.
14、±4
【解析】
根据平方差公式展开左边即可得出答案.
【详解】
∵(x-ay)(x+ay)=
又(x-ay)(x+ay)
∴
解得:a=±4
故答案为:±4.
【点睛】
本题考查的平方差公式:.
15、3或1
【解析】
分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.
【详解】
当△CEF为直角三角形时,有两种情况:
当点F落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=8,
∴AC= =10,
∵∠B沿AE折叠,使点B落在点F处,
∴∠AFE=∠B=90°,
当△CEF为直角三角形时,只能得到∠EFC=90°,
∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,
∴EB=EF,AB=AF=1,
∴CF=10﹣1=4,
设BE=x,则EF=x,CE=8﹣x,
在Rt△CEF中,
∵EF2+CF2=CE2,
∴x2+42=(8﹣x)2,
解得x=3,
∴BE=3;
②当点F落在AD边上时,如图2所示.
此时ABEF为正方形,
∴BE=AB=1.
综上所述,BE的长为3或1.
故答案为3或1.
【点睛】
本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论.
16、1
【解析】
试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.
考点:三角形的外角性质;三角形内角和定理.
17、4n﹣1.
【解析】
由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n﹣1)=4n﹣1个.
18、1
【解析】
根据函数值相等两点关于对称轴对称,可得答案.
【详解】
由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.
故答案为:1.
【点睛】
本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.
【解析】
(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;
(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.
【详解】
解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,
当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),
将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
解得:,则一次函数解析式为y=x+2;
(2)由题意知BC=2,则△ACB的面积=×2×1=1.
【点睛】
本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.
20、
【解析】
作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.
【详解】
如图所示,作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,
∵∠A=∠CBD=36°,∠C=∠C,
∴△ABC∽△BDC,
∴,
设BC=BD=AD=x,则CD=4﹣x,
∵BC2=AC×CD,
∴x2=4×(4﹣x),
解得x1=,x2=(舍去),
∴BC的长.
【点睛】
本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
21、2-
【解析】
先求三角函数,再根据实数混合运算法计算.
【详解】
解:原式=2×1-1-=1+1-=2-
【点睛】
此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.
22、(1)200;(2)54°;(3)见解析;(4)
【解析】
(1)根据A的人数及所占的百分比即可求出总人数;
(2)用D的人数除以总人数再乘360°即可得出答案;
(3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;
(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.
【详解】
解:(1)学生报名总人数为(人),
故答案为:200;
(2)项目所在扇形的圆心角等于,
故答案为:54°;
(3)项目的人数为,
补全图形如下:
(4)画树状图得:
所有出现的等可能性结果共有12种,其中满足条件的结果有2种.
恰好选中甲、乙两名同学的概率为.
【点睛】
本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.
23、(1)y1=-20x+1200, 800;(2)15≤x≤40.
【解析】
(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.
【详解】
解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-20×20+1200=800,
(2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y1+y2=-20x+1200+25x-500=5x+700,
由题意
解得该不等式组的解集为15≤x≤40
所以发生严重干旱时x的范围为15≤x≤40.
【点睛】
此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.
24、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,-1)或(0,-1).
【解析】
(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.
(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.
(1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.
【详解】
解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,
∴y=2x﹣6,
令y=0,解得:x=1,
∴B的坐标是(1,0).
∵A为顶点,
∴设抛物线的解析为y=a(x﹣1)2﹣4,
把B(1,0)代入得:4a﹣4=0,
解得a=1,
∴y=(x﹣1)2﹣4=x2﹣2x﹣1.
(2)存在.
∵OB=OC=1,OP=OP,
∴当∠POB=∠POC时,△POB≌△POC,
此时PO平分第二象限,即PO的解析式为y=﹣x.
设P(m,﹣m),则﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),
∴P(,).
(1)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,
∴,即=,∴DQ1=,
∴OQ1=,即Q1(0,-);
②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,
∴,即,
∴OQ2=,即Q2(0,);
③如图,当∠AQ1B=90°时,作AE⊥y轴于E,
则△BOQ1∽△Q1EA,
∴,即
∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,
即Q1(0,﹣1),Q4(0,﹣1).
综上,Q点坐标为(0,-)或(0,)或(0,﹣1)或(0,﹣1).
25、(1)详见解析(2)2400
【解析】
(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.
(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.
【详解】
解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;
根据频数分布直方图可得:m=12;
则n=100﹣4﹣12﹣24﹣36﹣4=1.
补全频数分布直方图如下:
(2)∵优秀的人数所占的比例是:=0.6,
∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)
26、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
【解析】
【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
根据题意得,,
解得,
经检验,是原方程的解,
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
甲乙两种商品的销售量为,
设甲种商品按原销售单价销售a件,则
,
解得,
答:甲种商品按原销售单价至少销售20件.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
27、(1)(2)作图见解析;(3).
【解析】
(1)利用平移的性质画图,即对应点都移动相同的距离.
(2)利用旋转的性质画图,对应点都旋转相同的角度.
(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
【详解】
解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.
(3)∵,
∴点B所走的路径总长=.
考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
2022年海南省重点中学中考联考数学试题含解析: 这是一份2022年海南省重点中学中考联考数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,在数轴上表示不等式2,计算的值为,的相反数是等内容,欢迎下载使用。
2022年河南省郑州市登封市重点中学中考联考数学试题含解析: 这是一份2022年河南省郑州市登封市重点中学中考联考数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,计算﹣1﹣,下列运算中,正确的是等内容,欢迎下载使用。
2022届阳江市重点中学中考联考数学试题含解析: 这是一份2022届阳江市重点中学中考联考数学试题含解析,共26页。试卷主要包含了如图,在平面直角坐标系中,以A等内容,欢迎下载使用。