2022届阳江市重点中学中考联考数学试题含解析
展开
这是一份2022届阳江市重点中学中考联考数学试题含解析,共26页。试卷主要包含了如图,在平面直角坐标系中,以A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
2.如图所示的几何体的左视图是( )
A. B. C. D.
3.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )
A.y=(x﹣2)2+1 B.y=(x+2)2+1
C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
4.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是( )
A.2 B. C. D.
5. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( )
A.0.8×1011 B.8×1010 C.80×109 D.800×108
6.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
7.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )
A.∠α=60°,∠α的补角∠β=120°,∠β>∠α
B.∠α=90°,∠α的补角∠β=90°,∠β=∠α
C.∠α=100°,∠α的补角∠β=80°,∠β<∠α
D.两个角互为邻补角
8.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)
9.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )
A.5元,2元 B.2元,5元
C.4.5元,1.5元 D.5.5元,2.5元
10.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,) B.(2,) C.(,) D.(,3﹣)
11.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1 B.3 C.4 D.5
12.关于二次函数,下列说法正确的是( )
A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧
C.当时,的值随值的增大而减小 D.的最小值为-3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.
14.如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为________.
15.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x的函数关系式为______.
16.一个n边形的每个内角都为144°,则边数n为______.
17.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其 浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.
18.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知关于x的一元二次方程为常数.
求证:不论m为何值,该方程总有两个不相等的实数根;
若该方程一个根为5,求m的值.
20.(6分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.
(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;
(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.
图① 图② 图③
21.(6分)小明遇到这样一个问题:已知:. 求证:.
经过思考,小明的证明过程如下:
∵,∴.∴.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.
根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:
已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.
22.(8分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).
(1)求抛物线的表达式;
(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.
23.(8分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.
24.(10分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”
(1)⊙O的半径为6,OP=1.
①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.
25.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
26.(12分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.
27.(12分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经
了解得到以下信息(如表):
工程队
每天修路的长度(米)
单独完成所需天数(天)
每天所需费用(元)
甲队
30
n
600
乙队
m
n﹣14
1160
(1)甲队单独完成这项工程所需天数n= ,乙队每天修路的长度m= (米);
(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).
①当x=90时,求出乙队修路的天数;
②求y与x之间的函数关系式(不用写出x的取值范围);
③若总费用不超过22800元,求甲队至少先修了多少米.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
2、A
【解析】
本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.
3、C
【解析】
试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
考点:二次函数的顶点式、对称轴
点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
4、C
【解析】
当⊙C与AD相切时,△ABE面积最大,
连接CD,
则∠CDA=90°,
∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
∴CD=1,AC=2+1=3,
∴AD==2,
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,
∴
即,∴OE=,
∴BE=OB+OE=2+
∴S△ABE=
BE?OA=×(2+)×2=2+
故答案为C.
5、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将800亿用科学记数法表示为:8×1.
故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、C
【解析】
分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
详解:将三个小区分别记为A、B、C,
列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为.
故选:C.
点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
7、C
【解析】
熟记反证法的步骤,然后进行判断即可.
解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
D、由于无法说明两角具体的大小关系,故D错误.
故选C.
8、B
【解析】
作出图形,结合图形进行分析可得.
【详解】
如图所示:
①以AC为对角线,可以画出▱AFCB,F(-3,1);
②以AB为对角线,可以画出▱ACBE,E(1,-1);
③以BC为对角线,可以画出▱ACDB,D(3,1),
故选B.
9、A
【解析】
可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.
【详解】
设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:
,解得:.
故1本笔记本的单价为5元,1支笔的单价为2元.
故选A.
【点睛】
本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.
10、A
【解析】
解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.
11、D
【解析】
根据二次函数的图象与性质即可求出答案.
【详解】
解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
【点睛】
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
12、D
【解析】
分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.
详解:∵y=2x2+4x-1=2(x+1)2-3,
∴当x=0时,y=-1,故选项A错误,
该函数的对称轴是直线x=-1,故选项B错误,
当x<-1时,y随x的增大而减小,故选项C错误,
当x=-1时,y取得最小值,此时y=-3,故选项D正确,
故选D.
点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、17
【解析】
∵8是出现次数最多的,∴众数是8,
∵这组数据从小到大的顺序排列,处于中间位置的两个数都是9,∴中位数是9,
所以中位数与众数之和为8+9=17.
故答案为17小时.
14、1.
【解析】
易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.
【详解】
解:根据题意,易得△MBA∽△MCO,
根据相似三角形的性质可知
,
即,
解得AM=1m.则小明的影长为1米.
故答案是:1.
【点睛】
本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.
15、y=2x2﹣6x+2
【解析】
由AAS证明△DHE≌△AEF,得出DE=AF=x,DH=AE=1-x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式.
【详解】
如图所示:
∵四边形ABCD是边长为1的正方形,
∴∠A=∠D=20°,AD=1.
∴∠1+∠2=20°,
∵四边形EFGH为正方形,
∴∠HEF=20°,EH=EF.
∴∠1+∠1=20°,
∴∠2=∠1,
在△AHE与△BEF中
,
∴△DHE≌△AEF(AAS),
∴DE=AF=x,DH=AE=1-x,
在Rt△AHE中,由勾股定理得:
EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;
即y=2x2-6x+2(0<x<1),
故答案为y=2x2-6x+2.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键.
16、10
【解析】
解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36°,因为多边形的外角和是360°,所以这个多边形的边数等于360°÷36°=10,
故答案为:10
17、
【解析】
科学记数法的表示形式为ax10n的形式,其中1≤lal1时,n是正数;当原数的绝对值
相关试卷
这是一份广东阳江市阳春八甲中学2022年中考联考数学试题含解析,共16页。试卷主要包含了下列四个多项式,能因式分解的是等内容,欢迎下载使用。
这是一份2022年郑州市重点中学中考联考数学试题含解析,共20页。试卷主要包含了如图所示的几何体的左视图是,某校八,如果将直线l1等内容,欢迎下载使用。
这是一份2022年阳江市重点中学中考一模数学试题含解析,共19页。试卷主要包含了下面运算结果为的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。