2022届广西省来宾市重点名校中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图是一个几何体的主视图和俯视图,则这个几何体是( )
A.三棱柱 B.正方体 C.三棱锥 D.长方体
2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( )
A. B. C. D.
3.将三粒均匀的分别标有,,,,,的正六面体骰子同时掷出,朝上一面上的数字分别为,,,则,,正好是直角三角形三边长的概率是( )
A. B. C. D.
4.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )
A.32° B.30° C.38° D.58°
5.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )
A. B. C. D.
6.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
7.若2m﹣n=6,则代数式m-n+1的值为( )
A.1 B.2 C.3 D.4
8.在△ABC中,∠C=90°,AC=9,sinB=,则AB=( )
A.15 B.12 C.9 D.6
9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4 B.9:16 C.9:1 D.3:1
10.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )
A.3 B.4 C. D.5
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.
12.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.
13.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.
14.已知图中的两个三角形全等,则∠1等于____________.
15.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.
16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.
三、解答题(共8题,共72分)
17.(8分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
18.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:
(1)请用t分别表示A、B的路程sA、sB;
(2)在A出发后几小时,两人相距15km?
19.(8分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
20.(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.
(1)按如下分数段整理、描述这两组数据:
成绩x
学生
70≤x≤74
75≤x≤79
80≤x≤84
85≤x≤89
90≤x≤94
95≤x≤100
甲
______
______
______
______
______
______
乙
1
1
4
2
1
1
(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
学生
极差
平均数
中位数
众数
方差
甲
______
83.7
______
86
13.21
乙
24
83.7
82
______
46.21
(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.
21.(8分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.
22.(10分)如图,已知∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE与BD相交于点O.求证:EC=ED.
23.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
成绩
频数
频率
优秀
45
b
良好
a
0.3
合格
105
0.35
不合格
60
c
(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.
24.如图,已知△ABC,按如下步骤作图:
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
(1)求证:四边形ADCE是菱形;
(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
【分析】根据三视图的知识使用排除法即可求得答案.
【详解】如图,由主视图为三角形,排除了B、D,
由俯视图为长方形,可排除C,
故选A.
【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.
2、A
【解析】
试题解析:∵一根圆柱形的空心钢管任意放置,
∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,
∴主视图不可能是.
故选A.
3、C
【解析】
三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.
【详解】
解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,
故选C.
【点睛】
本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.
4、A
【解析】
根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
【详解】
解:∵∠B=58°,
∴∠AOC=116°,
∵OA=OC,
∴∠C=∠OAC=32°,
故选:A.
【点睛】
此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
5、D
【解析】
左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.
【详解】
请在此输入详解!
6、D
【解析】
找到从左面看到的图形即可.
【详解】
从左面上看是D项的图形.故选D.
【点睛】
本题考查三视图的知识,左视图是从物体左面看到的视图.
7、D
【解析】
先对m-n+1变形得到(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.
【详解】
mn+1
=(2m﹣n)+1
当2m﹣n=6时,原式=×6+1=3+1=4,故选:D.
【点睛】
本题考查代数式,解题的关键是掌握整体代入法.
8、A
【解析】
根据三角函数的定义直接求解.
【详解】
在Rt△ABC中,∠C=90°,AC=9,
∵,
∴,
解得AB=1.
故选A
9、B
【解析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:1.
故选B.
10、B
【解析】
连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.
【详解】
连接DF,
∵四边形ABCD是矩形
∴
在中,
故选:B.
【点睛】
本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、y2<y1<y2
【解析】
分析:设t=k2﹣2k+2,配方后可得出t>1,利用反比例函数图象上点的坐标特征可求出y1、y2、y2的值,比较后即可得出结论.
详解:设t=k2﹣2k+2,
∵k2﹣2k+2=(k﹣1)2+2>1,
∴t>1.
∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函数y=(k为常数)的图象上,
∴y1=﹣,y2=﹣t,y2=t,
又∵﹣t<﹣<t,
∴y2<y1<y2.
故答案为:y2<y1<y2.
点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y2的值是解题的关键.
12、7秒或25秒.
【解析】
考点:勾股定理;等腰三角形的性质.
专题:动点型;分类讨论.
分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.
解答:解:如图,作AD⊥BC,交BC于点D,
∵BC=8cm,
∴BD=CD=BC=4cm,
∴AD==3,
分两种情况:当点P运动t秒后有PA⊥AC时,
∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,
∴PD2+32=(PD+4)2-52∴PD=2.25,
∴BP=4-2.25=1.75=0.25t,
∴t=7秒,
当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,
∴BP=4+2.25=6.25=0.25t,
∴t=25秒,
∴点P运动的时间为7秒或25秒.
点评:本题利用了等腰三角形的性质和勾股定理求解.
13、1.
【解析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.
【详解】
解:∵DE∥BC,
∴∠DEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠DEB,
∴BD=DE,
∵DE=2AD,
∴BD=2AD,
∵DE∥BC,
∴AD:DB=AE:EC,
∴EC=2AE=2×3=1.
故答案为:1.
【点睛】
此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.
14、58°
【解析】
如图,∠2=180°−50°−72°=58°,
∵两个三角形全等,
∴∠1=∠2=58°.
故答案为58°.
15、1
【解析】
主视图、左视图是分别从物体正面、左面看,所得到的图形.
【详解】
易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
故答案为1.
16、1
【解析】
作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中
∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y= 上,
∴a=1×1=1.
故答案是:1.
三、解答题(共8题,共72分)
17、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.
【解析】
试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.
试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元,
依题意得:解得:
答:甲种材料每千克25元, 乙种材料每千克35元.
(2)生产B产品a件,生产A产品(60-a)件. 依题意得:
解得:
∵a的值为非负整数 ∴a=39、40、41、42
∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件
(3)、答:生产A产品21件,B产品39件成本最低.
设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500
∵k=55>0 ∴W随a增大而增大∴当a=39时,总成本最低.
考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.
18、(1)sA=45t﹣45,sB=20t;(2)在A出发后小时或小时,两人相距15km.
【解析】
(1)根据函数图象中的数据可以分别求得s与t的函数关系式;
(2)根据(1)中的函数解析式可以解答本题.
【详解】
解:(1)设sA与t的函数关系式为sA=kt+b,
,得,
即sA与t的函数关系式为sA=45t﹣45,
设sB与t的函数关系式为sB=at,
60=3a,得a=20,
即sB与t的函数关系式为sB=20t;
(2)|45t﹣45﹣20t|=15,
解得,t1=,t2=,
,,
即在A出发后小时或小时,两人相距15km.
【点睛】
本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.
19、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
【解析】
试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
(2)先求出C的人数,再求出C的百分比即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
试题解析:(1)根据题意得: 15÷30%=50(名).
答;在这项调查中,共调查了50名学生;
(2)图如下:
(3)用A表示男生,B表示女生,画图如下:
共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是.
20、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析
【解析】
(1)根据折线统计图数字进行填表即可;
(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;
(3)可分别从平均数、方差、极差三方面进行比较.
【详解】
(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,
∴70⩽x⩽74无,共0个;
75⩽x⩽79之间有75,共1个;
80⩽x⩽84之间有84,82,1,83,共4个;
85⩽x⩽89之间有89,86,86,85,86,共5个;
90⩽x⩽94之间和95⩽x⩽100无,共0个.
故答案为0;1;4;5;0;0;
(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;
∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,
∴中位数为(84+85)=84.5;
∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,
1出现3次,乙成绩的众数为1.
故答案为14;84.5;1;
(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.
或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)
故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
【点睛】
此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.
21、(1)见解析
(2)图中阴影部分的面积为π.
【解析】
(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;
(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.
【详解】
(1)证明:连接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=∠ACD-∠2=90°,
即OC⊥CD,
∴CD是⊙O的切线;
(2)解:∠1=∠2+∠A=60°.
∴S扇形BOC==.
在Rt△OCD中,∠D=30°,
∴OD=2OC=4,
∴CD==.
∴SRt△OCD=OC×CD=×2×=.
∴图中阴影部分的面积为:-.
22、见解析
【解析】
由∠1=∠2,可得∠BED=∠AEC,根据利用ASA可判定△BED≌△AEC,然后根据全等三角形的性质即可得证.
【详解】
解:∵∠1=∠2,
∴∠1+∠AED=∠2+∠AED,
即∠BED=∠AEC,
在△BED和△AEC中,
,
∴△BED≌△AEC(ASA),
∴ED=EC.
【点睛】
本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
23、(1)300人(2)b=0.15,c=0.2;(3)
【解析】
分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;
(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;
(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.
详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),
答:该校初三学生共有300人;
(2)由(1)得:a=300×0.3=90(人),
b==0.15,
c==0.2;
如图所示:
(3)画树形图得:
∵一共有12种情况,抽取到甲和乙的有2种,
∴P(抽到甲和乙)==.
点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.
24、(1)详见解析;(2)1.
【解析】
(1)利用直线DE是线段AC的垂直平分线,得出AC⊥DE,即∠AOD=∠COE=90°,从而得出△AOD≌△COE,即可得出四边形ADCE是菱形.
(2)利用当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.
【详解】
(1)证明:由题意可知:
∵分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
∴直线DE是线段AC的垂直平分线,
∴AC⊥DE,即∠AOD=∠COE=90°;
且AD=CD、AO=CO,
又∵CE∥AB,
∴∠1=∠2,
在△AOD和△COE中
∴△AOD≌△COE(AAS),
∴OD=OE,
∵A0=CO,DO=EO,
∴四边形ADCE是平行四边形,
又∵AC⊥DE,
∴四边形ADCE是菱形;
(2)解:当∠ACB=90°时,
OD∥BC,
即有△ADO∽△ABC,
∴
又∵BC=6,
∴OD=3,
又∵△ADC的周长为18,
∴AD+AO=9,
即AD=9﹣AO,
∴
可得AO=4,
∴DE=6,AC=8,
∴
【点睛】
考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.
广西省崇左市天等县重点中学2022年中考考前最后一卷数学试卷含解析: 这是一份广西省崇左市天等县重点中学2022年中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了下列计算正确的是,2018的相反数是等内容,欢迎下载使用。
广西省桂林市达标名校2022年中考考前最后一卷数学试卷含解析: 这是一份广西省桂林市达标名校2022年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下面的几何体中,主等内容,欢迎下载使用。
2022年河南省鲁山、舞钢重点名校中考考前最后一卷数学试卷含解析: 这是一份2022年河南省鲁山、舞钢重点名校中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图等内容,欢迎下载使用。