2022届安师大附中重点名校中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如果,那么代数式的值是( )
A.6 B.2 C.-2 D.-6
2.下列说法不正确的是( )
A.选举中,人们通常最关心的数据是众数
B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.数据3,5,4,1,﹣2的中位数是4
3.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是( )
A. B. C. D.
4.满足不等式组的整数解是( )
A.﹣2 B.﹣1 C.0 D.1
5.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是( )
A. B. C. D.
6.下列各数中是无理数的是( )
A.cos60° B. C.半径为1cm的圆周长 D.
7. “车辆随机到达一个路口,遇到红灯”这个事件是( )
A.不可能事件 B.不确定事件 C.确定事件 D.必然事件
8.方程x2+2x﹣3=0的解是( )
A.x1=1,x2=3 B.x1=1,x2=﹣3
C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
9.下列说法:
四边相等的四边形一定是菱形
顺次连接矩形各边中点形成的四边形一定是正方形
对角线相等的四边形一定是矩形
经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有 个.
A.4 B.3 C.2 D.1
10.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
二、填空题(共7小题,每小题3分,满分21分)
11.不等式组的解集为______.
12.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=,则CD=_____.
13.不等式组的所有整数解的积为__________.
14.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)
15.已知双曲线经过点(-1,2),那么k的值等于_______.
16.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.
17.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.
三、解答题(共7小题,满分69分)
18.(10分)如图所示:△ABC是等腰三角形,∠ABC=90°.
(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);
(2)垂直平分线l交AC于点D,求证:AB=2DH.
19.(5分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
20.(8分)解分式方程: -1=
21.(10分)如图,,,,求证:。
22.(10分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.
(1)求证:∠A=2∠BDF;
(2)若AC=3,AB=5,求CE的长.
23.(12分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.
24.(14分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.
(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x=,请求出该抛物线的顶点坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
【详解】∵3a2+5a-1=0,
∴3a2+5a=1,
∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
故选A.
【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
2、D
【解析】
试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
故选D.
考点:随机事件发生的可能性(概率)的计算方法
3、B
【解析】
画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.
【详解】
画树状图如下:
由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,
所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,
故选B.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
4、C
【解析】
先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.
【详解】
∵解不等式①得:x≤0.5,
解不等式②得:x>-1,
∴不等式组的解集为-1<x≤0.5,
∴不等式组的整数解为0,
故选C.
【点睛】
本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.
5、D
【解析】
【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.
【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,
∵∠ACB=90°,即∠BCD+∠ACD=90°,
∴∠ACD=∠B=α,
A、在Rt△BCD中,sinα=,故A正确,不符合题意;
B、在Rt△ABC中,sinα=,故B正确,不符合题意;
C、在Rt△ACD中,sinα=,故C正确,不符合题意;
D、在Rt△ACD中,cosα=,故D错误,符合题意,
故选D.
【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
6、C
【解析】
分析:根据“无理数”的定义进行判断即可.
详解:
A选项中,因为,所以A选项中的数是有理数,不能选A;
B选项中,因为是无限循环小数,属于有理数,所以不能选B;
C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;
D选项中,因为,2是有理数,所以不能选D.
故选.C.
点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.
7、B
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
“车辆随机到达一个路口,遇到红灯”是随机事件.
故选:.
【点睛】
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、B
【解析】
本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.
【详解】
x2+2x-3=0,
即(x+3)(x-1)=0,
∴x1=1,x2=﹣3
故选:B.
【点睛】
本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.
9、C
【解析】
∵四边相等的四边形一定是菱形,∴①正确;
∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
∵对角线相等的平行四边形才是矩形,∴③错误;
∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
其中正确的有2个,故选C.
考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
10、D
【解析】
试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.
故选D
考点:几何体的形状
二、填空题(共7小题,每小题3分,满分21分)
11、1<x≤1
【解析】
解不等式x﹣3(x﹣2)<1,得:x>1,
解不等式,得:x≤1,
所以不等式组解集为:1<x≤1,
故答案为1<x≤1.
12、
【解析】
延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.
【详解】
如图,延长AD、BC相交于点E,
∵∠B=90°,
∴,
∴BE=,
∴CE=BE-BC=2,AE=,
∴,
又∵∠CDE=∠CDA=90°,
∴在Rt△CDE中,,
∴CD=.
13、1
【解析】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的整数解为﹣1,1,1…51,
所以所有整数解的积为1,
故答案为1.
【点睛】
本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.
14、①②③⑤
【解析】
根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥
【详解】
由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=
∴abc>0,4ac<b2,当时,y随x的增大而减小.故①②⑤正确,
∵
∴2a+b>0,
故③正确,
由图象可得顶点纵坐标小于﹣2,则④错误,
当x=1时,y=a+b+c<0,故⑥错误
故答案为:①②③⑤
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物
线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
15、-1
【解析】
分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.
16、∠A=∠C或∠ADC=∠ABC
【解析】
本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.
【详解】
添加条件可以是:∠A=∠C或∠ADC=∠ABC.
∵添加∠A=∠C根据AAS判定△AOD≌△COB,
添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,
故填空答案:∠A=∠C或∠ADC=∠ABC.
【点睛】
本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.
17、1
【解析】
根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.
【详解】
设小明的速度为akm/h,小亮的速度为bkm/h,
,
解得, ,
当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),
故答案为1.
【点睛】
此题考查一次函数的应用,解题关键在于列出方程组.
三、解答题(共7小题,满分69分)
18、 (1)见解析;(2)证明见解析.
【解析】
(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;
(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.
【详解】
解:(1)如图所示:直线l即为所求;
(2)证明:∵点H是AB的中点,且DH⊥AB,
∴DH∥BC,
∴点D是AC的中点,
∵
∴AB=2DH.
【点睛】
考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.
19、 (1);
(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
【解析】
(1)根据销售额=销售量×销售价单x,列出函数关系式.
(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
【详解】
解:(1)由题意得:,
∴w与x的函数关系式为:.
(2),
∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
(3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
∵3>28,∴x2=3不符合题意,应舍去.
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
20、7
【解析】
根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.
【详解】
-1=
3-(x-3)=-1
3-x+3=-1
x=7
【点睛】
此题主要考查分式方程的求解,解题的关键是正确去掉分母.
21、见解析
【解析】
据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.
【详解】
证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.
∵在△ABC和△AED中,
∴△ABC≌△AED(AAS).
【点睛】
此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角
22、(1)见解析;(2)1
【解析】
(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;
(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.
【详解】
(1)证明:连接AD,如图,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵EF为切线,
∴OD⊥DF,
∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,
∴∠BDF=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠OAD=∠BDF,
∵D是弧BC的中点,
∴∠COD=∠OAD,
∴∠CAB=2∠BDF;
(2)解:连接BC交OD于H,如图,
∵D是弧BC的中点,
∴OD⊥BC,
∴CH=BH,
∴OH为△ABC的中位线,
∴,
∴HD=2.5-1.5=1,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴四边形DHCE为矩形,
∴CE=DH=1.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.
23、(1)详见解析;(2)80°.
【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
【解析】
(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
【详解】
证明:(1)∵AC=AD,
∴∠ACD=∠ADC,
又∵∠BCD=∠EDC=90°,
∴∠ACB=∠ADE,
在△ABC和△AED中,
,
∴△ABC≌△AED(SAS);
解:(2)当∠B=140°时,∠E=140°,
又∵∠BCD=∠EDC=90°,
∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
【点睛】
考点:全等三角形的判定与性质.
24、 (1)见解析;(2)顶点为(,﹣)
【解析】
(1)根据题意,由根的判别式△=b2﹣4ac>0得到答案;
(2)结合题意,根据对称轴x=﹣得到m=2,即可得到抛物线解析式为y=x2﹣5x+6,再将抛物线解析式为y=x2﹣5x+6变形为y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.
【详解】
(1)证明:a=1,b=﹣(2m+1),c=m2+m,
∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,
∴抛物线与x轴有两个不相同的交点.
(2)解:∵y=x2﹣(2m+1)x+m2+m,
∴对称轴x=﹣==,
∵对称轴为直线x=,
∴=,
解得m=2,
∴抛物线解析式为y=x2﹣5x+6,
∵y=x2﹣5x+6=(x﹣)2﹣,
∴顶点为(,﹣ ).
【点睛】
本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.
2022年安微省达标名校中考数学考前最后一卷含解析: 这是一份2022年安微省达标名校中考数学考前最后一卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中,无理数是,方程的根是,运用图形变化的方法研究下列问题,我市某一周的最高气温统计如下表,计算的正确结果是等内容,欢迎下载使用。
2022年河南省鲁山、舞钢重点名校中考考前最后一卷数学试卷含解析: 这是一份2022年河南省鲁山、舞钢重点名校中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图等内容,欢迎下载使用。
2022年甘肃省古浪县重点名校中考考前最后一卷数学试卷含解析: 这是一份2022年甘肃省古浪县重点名校中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了已知点 A等内容,欢迎下载使用。