|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届甘肃省张掖市甘州中学中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届甘肃省张掖市甘州中学中考适应性考试数学试题含解析01
    2022届甘肃省张掖市甘州中学中考适应性考试数学试题含解析02
    2022届甘肃省张掖市甘州中学中考适应性考试数学试题含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届甘肃省张掖市甘州中学中考适应性考试数学试题含解析

    展开
    这是一份2022届甘肃省张掖市甘州中学中考适应性考试数学试题含解析,共17页。试卷主要包含了化简的结果是,二次函数,计算的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,是一个工件的三视图,则此工件的全面积是(  )

    A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2
    2.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是(  )

    A. B. C. D.
    3.一、单选题
    在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的(  )
    A.平均数 B.众数 C.中位数 D.方差
    4.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足(  )

    A.a= B.a=2b C.a=b D.a=3b
    5.化简的结果是( )
    A.±4 B.4 C.2 D.±2
    6.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )

    A. B. C. D.
    7.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为(  )
    A.1 B.2 C.3 D.4
    8.二次函数(a≠0)的图象如图所示,则下列命题中正确的是(  )

    A.a >b>c
    B.一次函数y=ax +c的图象不经第四象限
    C.m(am+b)+b<a(m是任意实数)
    D.3b+2c>0
    9.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )

    A.60° B.65° C.70° D.75°
    10.计算的值为( )
    A. B.-4 C. D.-2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .

    12.方程的根是________.
    13.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.

    14.如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_____.

    15.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm2
    16.因式分解a3-6a2+9a=_____.
    17.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知△ABC.
    (1)请用直尺和圆规作出∠A的平分线AD(不要求写作法,但要保留作图痕迹);
    (2)在(1)的条件下,若AB=AC,∠B=70°,求∠BAD的度数.

    19.(5分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D.
    (1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
    (2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
    (3)在(1)条件下,四边形AODC的面积为多少?

    20.(8分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=   (用含a,b的代数式表示);若b=3,tan∠DCE=,求a的值.

    21.(10分)先化简再求值:÷(﹣1),其中x=.
    22.(10分)某船的载重为260吨,容积为1000m1.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m1,乙种货物每吨体积为2m1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙).
    23.(12分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?
    24.(14分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程两个根均为正整数,求负整数m的值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.
    【详解】
    圆锥的底面圆的直径为12cm,高为8cm,
    所以圆锥的母线长==10,
    所以此工件的全面积=π×62+×2π×6×10=96π(cm2).
    故答案选C.
    【点睛】
    本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.
    2、C
    【解析】
    分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
    详解:∵OB=1,AB⊥OB,点A在函数 (x<0)的图象上,
    ∴当x=−1时,y=2,
    ∴A(−1,2).
    ∵此矩形向右平移3个单位长度到的位置,
    ∴B1(2,0),
    ∴A1(2,2).
    ∵点A1在函数 (x>0)的图象上,
    ∴k=4,
    ∴反比例函数的解析式为,O1(3,0),
    ∵C1O1⊥x轴,
    ∴当x=3时,
    ∴P
    故选C.
    点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
    3、C
    【解析】
    由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.
    【详解】
    由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.
    故选C.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    4、B
    【解析】
    从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.
    【详解】
    由图形可知,
    S2=(a-b)2+b(a+b)+ab=a2+2b2,
    S1=(a+b)2-S2=2ab-b2,
    ∵S2=2S1,
    ∴a2+2b2=2(2ab﹣b2),
    ∴a2﹣4ab+4b2=0,
    即(a﹣2b)2=0,
    ∴a=2b,
    故选B.
    【点睛】
    本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
    5、B
    【解析】
    根据算术平方根的意义求解即可.
    【详解】
    4,
    故选:B.
    【点睛】
    本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.
    6、B
    【解析】
    过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
    【详解】
    过F作FH⊥AD于H,交ED于O,则FH=AB=1.
    ∵BF=1FC,BC=AD=3,
    ∴BF=AH=1,FC=HD=1,
    ∴AF===,
    ∵OH∥AE,
    ∴=,
    ∴OH=AE=,
    ∴OF=FH﹣OH=1﹣=,
    ∵AE∥FO,∴△AME∽△FMO,
    ∴=,∴AM=AF=,
    ∵AD∥BF,∴△AND∽△FNB,
    ∴=,
    ∴AN=AF=,
    ∴MN=AN﹣AM=﹣=,故选B.

    【点睛】
    构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
    7、C
    【解析】
    先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
    【详解】
    去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
    方程①的根的情况有两种:
    (1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
    解得a=.
    当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
    (2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
    (i)当x=1时,代入①式得3﹣a=1,即a=3.
    当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
    而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
    (ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
    当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
    x1是增根,故x=﹣为方程的唯一实根;
    因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
    故选C.
    【点睛】
    考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.
    8、D
    【解析】
    解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;
    B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;
    C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;
    D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②
    ①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;
    故选D.
    点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
    9、C
    【解析】
    试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
    考点:切线的性质、三角形外角的性质、圆的基本性质.
    10、C
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    原式=-3=-2,
    故选C.
    【点睛】
    本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    ∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,
    ∴由中点公式得:c=,
    ∴a+b=2c,
    ∴a+b-2c=1.
    故答案为1.
    12、x=2
    【解析】
    分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.
    详解:据题意得:2+2x=x2,
    ∴x2﹣2x﹣2=0,
    ∴(x﹣2)(x+1)=0,
    ∴x1=2,x2=﹣1.
    ∵≥0,
    ∴x=2.
    故答案为:2.
    点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验.
    13、1.
    【解析】
    由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.
    【详解】
    解:∵DE∥BC,
    ∴∠DEB=∠CBE,
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE,
    ∴∠ABE=∠DEB,
    ∴BD=DE,
    ∵DE=2AD,
    ∴BD=2AD,
    ∵DE∥BC,
    ∴AD:DB=AE:EC,
    ∴EC=2AE=2×3=1.
    故答案为:1.
    【点睛】
    此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.
    14、
    【解析】
    由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.
    【详解】
    ∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,
    ∴∠EOB=∠FOC,
    在△BOE和△COF中,,
    ∴△BOE≌△COF(ASA)
    ∴BE=FC=2,
    同理BF=AE=3,
    在Rt△BEF中,BF=3,BE=2,
    ∴EF==.
    故答案为
    【点睛】
    本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.
    15、60π
    【解析】
    圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.
    解:圆锥的侧面积=π×6×10=60πcm1.
    16、a(a-3)2
    【解析】
    根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.
    【详解】
    解:


    故答案为:.
    【点睛】
    本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.
    17、50
    【解析】
    根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.
    【详解】
    解:设铅直距离为x,则水平距离为,
    根据题意得:,
    解得:(负值舍去),
    则她实际上升了50米,
    故答案为:50
    【点睛】
    本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)20°;
    【解析】
    (1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;
    (2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.
    【详解】
    (1)如图,AD为所求;

    (2)∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC,
    ∴∠BDA=90°,
    ∴∠BAD=90°﹣∠B=90°﹣70°=20°.
    【点睛】
    考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.
    19、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1.
    【解析】
    试题分析:
    (1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;
    (2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;
    (3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.
    试题解析:
    (1)∵A(0,2),BC∥x轴,
    ∴B(﹣1,2),C(3,2),
    ∴AB=1,CA=3,
    ∴线段AB与线段CA的长度之比为;
    (2)∵B是函数y=﹣(x<0)的一点,C是函数y=(x>0)的一点,
    ∴B(﹣,a),C(,a),
    ∴AB=,CA=,
    ∴线段AB与线段CA的长度之比为;
    (3)∵=,
    ∴=,
    又∵OA=a,CD∥y轴,
    ∴,
    ∴CD=4a,
    ∴四边形AODC的面积为=(a+4a)×=1.
    20、(1);(2);(3).
    【解析】
    (1)求出BE,BD即可解决问题.
    (2)利用勾股定理,面积法求高CD即可.
    (3)根据CD=3DE,构建方程即可解决问题.
    【详解】
    解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,
    ∴.
    ∵CD,CE是斜边AB上的高,中线,
    ∴∠BDC=91°,.
    ∴在Rt△BCD中,

    (2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,


    故答案为:.
    (3)在Rt△BCD中,,
    ∴,
    又,
    ∴CD=3DE,即.
    ∵b=3,
    ∴2a=9﹣a2,即a2+2a﹣9=1.
    由求根公式得(负值舍去),
    即所求a的值是.
    【点睛】
    本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    21、
    【解析】
    分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
    详解:原式=
    =
    =
    =
    当时,原式==.
    点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    22、这艘船装甲货物80吨,装乙货物180吨.
    【解析】
    根据题意先列二元一次方程,再解方程即可.
    【详解】
    解:设这艘船装甲货物x吨,装乙货物y吨,
    根据题意,得.
    解得.
    答:这艘船装甲货物80吨,装乙货物180吨.
    【点睛】
    此题重点考查学生对二元一次方程的应用能力,熟练掌握二元一次方程的解法是解题的关键.
    23、该工程队原计划每周修建5米.
    【解析】
    找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.
    【详解】
    设该工程队原计划每周修建x米.
    由题意得:+1.
    整理得:x2+x﹣32=2.
    解得:x1=5,x2=﹣6(不合题意舍去).
    经检验:x=5是原方程的解.
    答:该工程队原计划每周修建5米.
    【点睛】
    本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.
    24、 (1)见解析;(2) m=-1.
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
    (2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
    【详解】
    (1)∵△=(m+3)2﹣4(m+2)
    =(m+1)2
    ∴无论m取何值,(m+1)2恒大于等于1
    ∴原方程总有两个实数根
    (2)原方程可化为:(x-1)(x-m-2)=1
    ∴x1=1, x2=m+2
    ∵方程两个根均为正整数,且m为负整数
    ∴m=-1.
    【点睛】
    本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.

    相关试卷

    2024年甘肃省张掖市甘州区中考数学诊断试卷(含解析): 这是一份2024年甘肃省张掖市甘州区中考数学诊断试卷(含解析),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年甘肃省张掖市甘州区思源实验中学中考数学模拟试卷(6月份)(含解析): 这是一份2023年甘肃省张掖市甘州区思源实验中学中考数学模拟试卷(6月份)(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年甘肃省张掖市甘州一中中考数学二模试卷(含解析): 这是一份2023年甘肃省张掖市甘州一中中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map