2021-2022学年江西省南康区中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
次序
第一次
第二次
第三次
第四次
第五次
甲命中的环数(环)
6
7
8
6
8
乙命中的环数(环)
5
10
7
6
7
根据以上数据,下列说法正确的是( )
A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
C.甲、乙成绩的众数相同 D.甲的成绩更稳定
2.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为( )
A.2 B.3 C.4 D.6
3.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是( )
A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2
4.下列四个图形中,是中心对称图形的是( )
A. B. C. D.
5.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )
A.50,50 B.50,30 C.80,50 D.30,50
6.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是( )
A. B. C. D.
7.下列运算结果为正数的是( )
A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
8.某商品的进价为每件元.当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件.现在要使利润为元,每件商品应降价( )元.
A.3 B.2.5 C.2 D.5
9.计算的结果是( )
A.1 B.﹣1 C.1﹣x D.
10.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了( )
A.25本 B.20本 C.15本 D.10本
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若关于x的不等式组恰有3个整数解,则字母a的取值范围是_____.
12.如图, ⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=__.
13.不等式2x-5<7-(x-5)的解集是______________.
14.若有意义,则x的范围是_____.
15.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为
16.关于的一元二次方程有两个相等的实数根,则________.
三、解答题(共8题,共72分)
17.(8分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
18.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.
19.(8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
(1)若OB=6cm.
①求点C的坐标;
②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
(2)点C与点O的距离的最大值是多少cm.
20.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:
(1)填空:每天可售出书 本(用含x的代数式表示);
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
21.(8分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,那么销售单价是多少?
22.(10分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?
23.(12分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?
24.如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.
(1)直接写出抛物线y=x2的焦点坐标以及直径的长.
(2)求抛物线y=x2-x+的焦点坐标以及直径的长.
(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.
(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.
②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
【详解】
把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
∴甲、乙成绩的中位数相同,故选项B错误;
根据表格中数据可知,甲的众数是8环,乙的众数是7环,
∴甲、乙成绩的众数不同,故选项C错误;
甲命中的环数的平均数为:(环),
乙命中的环数的平均数为:(环),
∴甲的平均数等于乙的平均数,故选项A错误;
甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
因为2.8>0.8,
所以甲的稳定性大,故选项D正确.
故选D.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.
2、B
【解析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=6,
∴DE=BC=1.
故选B.
【点睛】
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
3、A
【解析】
根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.
【详解】
∵圆锥的轴截面是一个边长为3cm的等边三角形,
∴底面半径=1.5cm,底面周长=3πcm,
∴圆锥的侧面积=×3π×3=4.5πcm2,
故选A.
【点睛】
此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.
4、D
【解析】
试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.
解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项正确;
故选D.
考点:中心对称图形.
5、A
【解析】
分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.
详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).
故选A.
点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
6、A
【解析】
由题意可得:△APE和△PCF都是等腰直角三角形.
∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.
则y=2x,为正比例函数.
故选A.
7、B
【解析】
分别根据有理数的加、减、乘、除运算法则计算可得.
【详解】
解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
B、1﹣(﹣2)=1+2=3,结果为正数;
C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
故选B.
【点睛】
本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
8、A
【解析】
设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.
【详解】
解:设售价为x元时,每星期盈利为6120元,
由题意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=1,
由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.
∴每件商品应降价60-57=3元.
故选:A.
【点睛】
本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.
9、B
【解析】
根据同分母分式的加减运算法则计算可得.
【详解】
解:原式=
=
=
=-1,
故选B.
【点睛】
本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.
10、C
【解析】
设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
【详解】
解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
根据题意,得:,
解得:,
答:甲种笔记本买了25本,乙种笔记本买了15本.
故选C.
【点睛】
本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、﹣2≤a<﹣1.
【解析】
先确定不等式组的整数解,再求出a的范围即可.
【详解】
∵关于x的不等式组恰有3个整数解,
∴整数解为1,0,﹣1,
∴﹣2≤a<﹣1,
故答案为:﹣2≤a<﹣1.
【点睛】
本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键.
12、35°
【解析】
试题分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为35°.
考点:圆周角定理.
13、x<
【解析】
解:去括号得:2x-5<7-x+5,移项、合并得:3x<17,解得:x<.故答案为:x<.
14、x≤1.
【解析】
根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.
【详解】
依题意得:1﹣x≥0且x﹣3≠0,
解得:x≤1.
故答案是:x≤1.
【点睛】
本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.
15、
【解析】
试题解析:∵AH=2,HB=1,
∴AB=AH+BH=3,
∵l1∥l2∥l3,
∴
考点:平行线分线段成比例.
16、-1.
【解析】
根据根的判别式计算即可.
【详解】
解:依题意得:
∵关于的一元二次方程有两个相等的实数根,
∴= =4-41(-k)=4+4k=0
解得,k=-1.
故答案为:-1.
【点睛】
本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.
三、解答题(共8题,共72分)
17、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).
【解析】
【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,
得,解得:,
∴抛物线的表达式为y=﹣x2+2x+1;
(2)在图1中,连接PC,交抛物线对称轴l于点E,
∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,
∴抛物线的对称轴为直线x=1,
当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,
∵抛物线的表达式为y=﹣x2+2x+1,
∴点C的坐标为(0,1),点P的坐标为(2,1),
∴点M的坐标为(1,6);
当t≠2时,不存在,理由如下:
若四边形CDPM是平行四边形,则CE=PE,
∵点C的横坐标为0,点E的横坐标为0,
∴点P的横坐标t=1×2﹣0=2,
又∵t≠2,
∴不存在;
(1)①在图2中,过点P作PF∥y轴,交BC于点F.
设直线BC的解析式为y=mx+n(m≠0),
将B(1,0)、C(0,1)代入y=mx+n,
得,解得:,
∴直线BC的解析式为y=﹣x+1,
∵点P的坐标为(t,﹣t2+2t+1),
∴点F的坐标为(t,﹣t+1),
∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,
∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;
②∵﹣<0,
∴当t=时,S取最大值,最大值为.
∵点B的坐标为(1,0),点C的坐标为(0,1),
∴线段BC=,
∴P点到直线BC的距离的最大值为,
此时点P的坐标为(,).
【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
18、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.
【解析】
试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;
(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.
试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,
根据题意得:700(1+x)2=1183,
解得:x1=0.3=30%,x2=﹣2.3(舍去),
答:这两年该市推行绿色建筑面积的年平均增长率为30%;
(2)根据题意得:1183×(1+30%)=1537.9(万平方米),
∵1537.9>1500,
∴2017年该市能完成计划目标.
【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.
19、(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值1cm.
【解析】
试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.
试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:
在Rt△AOB中,AB=1,OB=6,则BC=6,
∴∠BAO=30°,∠ABO=60°,
又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,
∴BD=3,CD=3,
所以点C的坐标为(﹣3,9);
②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:
AO=1×cos∠BAO=1×cos30°=6.
∴A'O=6﹣x,B'O=6+x,A'B'=AB=1
在△A'O B'中,由勾股定理得,
(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),
∴滑动的距离为6(﹣1);
(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:
则OE=﹣x,OD=y,
∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,
∴△ACE∽△BCD,
∴,即,
∴y=﹣x,
OC2=x2+y2=x2+(﹣x)2=4x2,
∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,
故答案为1.
考点:相似三角形综合题.
20、(1)(300﹣10x).(2)每本书应涨价5元.
【解析】
试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.
试题解析:
(1)∵每本书上涨了x元,
∴每天可售出书(300﹣10x)本.
故答案为300﹣10x.
(2)设每本书上涨了x元(x≤10),
根据题意得:(40﹣30+x)(300﹣10x)=3750,
整理,得:x2﹣20x+75=0,
解得:x1=5,x2=15(不合题意,舍去).
答:若书店想每天获得3750元的利润,每本书应涨价5元.
21、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.
【解析】
(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;
【详解】
(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,
根据题意得,
解得k=﹣50,b=850,
所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;
(2)根据题意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,
解得x1=9,x2=13(不合题意,舍去),
∵销售单价不得高于12元/桶,也不得低于7元/桶,
∴x=13不合题意,
答:若该经营部希望日均获利1350元,那么销售单价是9元.
【点睛】
本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.
22、12
【解析】
设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.
【详解】
解:设矩形的长为x步,则宽为(60﹣x)步,
依题意得:x(60﹣x)=864,
整理得:x2﹣60x+864=0,
解得:x=36或x=24(不合题意,舍去),
∴60﹣x=60﹣36=24(步),
∴36﹣24=12(步),
则该矩形的长比宽多12步.
【点睛】
此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.
23、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.
【解析】
分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;
(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.
详解:(1)设直线AB的解析式为:y=kx+b,
代入A(4,4),B(6,2)得:,
解得:,
∴直线AB的解析式为:y=﹣x+8,
同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,
∵工资及其他费作为:0.4×5+1=3万元,
∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,
当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;
(2)当4≤x≤6时,
w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,
∴当x=6时,w1取最大值是1,
当6≤x≤8时,
w2=﹣x2+7x﹣23=﹣(x﹣7)2+,
当x=7时,w2取最大值是1.5,
∴==6,
即最快在第7个月可还清10万元的无息贷款.
点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.
24、(1)4(1)4(3)(4)①a=±;②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
【解析】
(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;
(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;
(3)根据题意和y=a(x-h)1+k(a≠0)的直径为,可以求得a的值;
(4)①根据题意和抛物线y=ax1+bx+c(a≠0)的焦点矩形的面积为1,可以求得a的值;
②根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.
【详解】
(1)∵抛物线y=x1,
∴此抛物线焦点的横坐标是0,纵坐标是:0+=1,
∴抛物线y=x1的焦点坐标为(0,1),
将y=1代入y=x1,得x1=-1,x1=1,
∴此抛物线的直径是:1-(-1)=4;
(1)∵y=x1-x+=(x-3)1+1,
∴此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,
∴焦点坐标为(3,3),
将y=3代入y=(x-3)1+1,得
3=(x-3)1+1,解得,x1=5,x1=1,
∴此抛物线的直径时5-1=4;
(3)∵焦点A(h,k+),
∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,
∴直径为:h+-(h-)==,
解得,a=±,
即a的值是;
(4)①由(3)得,BC=,
又CD=A'A=.
所以,S=BC•CD=•==1.
解得,a=±;
②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:
B(1,3),C(5,3),E(1,1),D(5,1),
当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,
∴当m=1-或m=5+时,1个公共点;
当1-<m≤1或5≤m<5+时,1个公共点.
由图可知,公共点个数随m的变化关系为
当m<1-时,无公共点;
当m=1-时,1个公共点;
当1-<m≤1时,1个公共点;
当1<m<5时,3个公共点;
当5≤m<5+时,1个公共点;
当m=5+时,1个公共点;
当m>5+时,无公共点;
由上可得,当m=1-或m=5+时,1个公共点;
当1-<m≤1或5≤m<5+时,1个公共点.
【点睛】
考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.
江西省上饶2021-2022学年中考猜题数学试卷含解析: 这是一份江西省上饶2021-2022学年中考猜题数学试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,有下列四种说法,方程=的解为,下列运算正确的是等内容,欢迎下载使用。
福建省龙文区2021-2022学年中考猜题数学试卷含解析: 这是一份福建省龙文区2021-2022学年中考猜题数学试卷含解析,共25页。试卷主要包含了定义运算“※”为等内容,欢迎下载使用。
2021-2022学年江西省赣州市南康区中考数学模试卷含解析: 这是一份2021-2022学年江西省赣州市南康区中考数学模试卷含解析,共17页。试卷主要包含了化简的结果是,一、单选题等内容,欢迎下载使用。