2021-2022学年江苏省泰州市海陵区重点名校中考四模数学试题含解析
展开
这是一份2021-2022学年江苏省泰州市海陵区重点名校中考四模数学试题含解析,共21页。试卷主要包含了如图等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为( )
A.4 B.﹣4 C.3 D.﹣3
2.如图所示的几何体的主视图是( )
A. B. C. D.
3.关于x的方程=无解,则k的值为( )
A.0或 B.﹣1 C.﹣2 D.﹣3
4.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩
人数
这些运动员跳高成绩的中位数是( )
A. B. C. D.
5.下列图形中,既是中心对称图形又是轴对称图形的是 ( )
A. B. C. D.
6.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )
A. B. C. D.
7.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )
A. B. C. D.
8.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是( )
A.0 B.0.8 C.2.5 D.3.4
9.在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是( )
A.(1,2) B.(–1,2)
C.(–1,–2) D.(1,–2)
10.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:
选手
1
2
3
4
5
6
7
8
9
10
时间(min)
129
136
140
145
146
148
154
158
165
175
由此所得的以下推断不正确的是( )
A.这组样本数据的平均数超过130
B.这组样本数据的中位数是147
C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差
D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好
二、填空题(共7小题,每小题3分,满分21分)
11.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为_____.(用字母n表示)
12.以下两题任选一题作答:
(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是 8m,则乘电梯次点 B 到点 C 上升的高度 h 是_____m.
(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形.
13.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.
14.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.
15.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.
16.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.
17.如图,中,,,,,平分,与相交于点,则的长等于_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.
19.(5分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
(1)求抛物线的解析式及点D的坐标;
(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.
20.(8分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)
21.(10分)观察下列等式:
①1×5+4=32;
②2×6+4=42;
③3×7+4=52;
…
(1)按照上面的规律,写出第⑥个等式:_____;
(2)模仿上面的方法,写出下面等式的左边:_____=502;
(3)按照上面的规律,写出第n个等式,并证明其成立.
22.(10分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):
请根据所给信息,解答下列问题:
(1)这组数据的中位数是 ,众数是 ;
(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)
(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?
23.(12分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.
如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.
(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.
(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程.
24.(14分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:
成本
(单位:万元/亩)
销售额
(单位:万元/亩)
郁金香
2.4
3
玫瑰
2
2.5
(1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式.(收益=销售额﹣成本)
(2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据一元二次方程根与系数的关系和整体代入思想即可得解.
【详解】
∵x1,x2是关于x的方程x2+bx﹣3=0的两根,
∴x1+x2=﹣b,x1x2=﹣3,
∴x1+x2﹣3x1x2=﹣b+9=5,
解得b=4.
故选A.
【点睛】
本题主要考查一元二次方程的根与系数的关系(韦达定理),
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.
2、A
【解析】
找到从正面看所得到的图形即可.
【详解】
解:从正面可看到从左往右2列一个长方形和一个小正方形,
故选A.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
3、A
【解析】
方程两边同乘2x(x+3),得
x+3=2kx,
(2k-1)x=3,
∵方程无解,
∴当整式方程无解时,2k-1=0,k=,
当分式方程无解时,①x=0时,k无解,
②x=-3时,k=0,
∴k=0或时,方程无解,
故选A.
4、C
【解析】
根据中位数的定义解答即可.
【详解】
解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
所以这些运动员跳高成绩的中位数是1.1.
故选:C.
【点睛】
本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
5、C
【解析】
试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;
B. 是轴对称图形,不是中心对称图形,故本选项错误;
C. 既是中心对称图又是轴对称图形,故本选项正确;
D. 是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
6、B
【解析】
根据折叠前后对应角相等可知.
解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故选B.
“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
7、C
【解析】
A、B、D不是该几何体的视图,C是主视图,故选C.
【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.
8、D
【解析】
如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判断;
【详解】
如图,点O的运动轨迹是图在黄线,
作CH⊥BD于点H,
∵六边形ABCDE是正六边形,
∴∠BCD=120º,
∴∠CBH=30º,
∴BH=cos30 º·BC=,
∴BD=.
∵DK=,
∴BK=,
点B,O间的距离d的最小值为0,最大值为线段BK=,
∴0≤d≤,即0≤d≤3.1,
故点B,O间的距离不可能是3.4,
故选:D.
【点睛】
本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.
9、A
【解析】
根据点N(–1,–2)绕点O旋转180°,所得到的对应点与点N关于原点中心对称求解即可.
【详解】
∵将点N(–1,–2)绕点O旋转180°,
∴得到的对应点与点N关于原点中心对称,
∵点N(–1,–2),
∴得到的对应点的坐标是(1,2).
故选A.
【点睛】
本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.
10、C
【解析】
分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.
点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.
二、填空题(共7小题,每小题3分,满分21分)
11、n﹣1(n为整数)
【解析】
试题分析:观察图形可得,第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;第4个图形中阴影部分的面积=()3=;…根据此规律可得第n个图形中阴影部分的面积=()n-1(n为整数)•
考点:图形规律探究题.
12、4 8
【解析】
(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;
(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
故可列出方程求解.
【详解】
(1)∵∠ABC=150°,∴斜面BC的坡角为30°,
∴h==4m
(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
依题意得
解得n=8
故为八边形.
【点睛】
此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.
13、
【解析】
试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.
14、, +2.
【解析】
当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.
【详解】
当点P旋转至CA的延长线上时,如图2.
∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,
∴BP=,
∵BP的中点是F,
∴CF=BP= .
取AB的中点M,连接MF和CM,如图2.
∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,
∴AB=2.
∵M为AB中点,
∴CM=AB=,
∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,
∴AP=AD=4,
∵M为AB中点,F为BP中点,
∴FM=AP=2.
当且仅当M、F、C三点共线且M在线段CF上时CF最大,
此时CF=CM+FM=+2.
故答案为, +2.
【点睛】
考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.
15、 cm
【解析】
利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.
【详解】
∵半径为1cm的圆形,
∴底面圆的半径为:1cm,周长为2πcm,
扇形弧长为:2π=,
∴R=4,即母线为4cm,
∴圆锥的高为:(cm).
故答案为cm.
【点睛】
此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.
16、1
【解析】
根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.
【详解】
解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.
则1张普通贺卡为:元,
由题意得:,
,
答:剩下的钱恰好还能买1张普通贺卡.
故答案为:1.
【点睛】
本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.
17、3
【解析】
如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.
【详解】
如图,延长CE、DE,分别交AB于G、H,
∵∠BAD=∠ADE=60°,
∴△ADH是等边三角形,
∴DH=AD=AH=5,∠DHA=60°,
∵AC=BC,CE平分∠ACB,∠ACB=90°,
∴AB==8,AG=AB=4,CG⊥AB,
∴GH=AH=AG=5-4=1,
∵∠DHA=60°,
∴∠GEH=30°,
∴EH=2GH=2
∴DE=DH-EH=5=2=3.
故答案为:3
【点睛】
本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.
三、解答题(共7小题,满分69分)
18、(1)见解析;(1)70°.
【解析】
(1)根据全等三角形的判定即可判断△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
【详解】
证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠1.
又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA).
(1)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
19、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
【解析】
分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
详解:
(1)∵OB=OC=1,
∴B(1,0),C(0,-1).
∴,
解得,
∴抛物线的解析式为.
∵=,
∴点D的坐标为(2,-8).
(2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
∵∠FAB=∠EDB,
∴tan∠FAG=tan∠BDE,
即,
解得,(舍去).
当x=7时,y=,
∴点F的坐标为(7,).
当点F在x轴下方时,设同理求得点F的坐标为(5,).
综上所述,点F的坐标为(7,)或(5,).
(3)∵点P在x轴上,
∴根据菱形的对称性可知点P的坐标为(2,0).
如图,当MN在x轴上方时,设T为菱形对角线的交点.
∵PQ=MN,
∴MT=2PT.
设TP=n,则MT=2n. ∴M(2+2n,n).
∵点M在抛物线上,
∴,即.
解得,(舍去).
∴MN=2MT=4n=.
当MN在x轴下方时,设TP=n,得M(2+2n,-n).
∵点M在抛物线上,
∴,
即.
解得,(舍去).
∴MN=2MT=4n=.
综上所述,菱形对角线MN的长为或.
点睛:
1.求二次函数的解析式
(1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
20、见解析
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.
【详解】
解:如图,点E即为所求作的点.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.
21、6×10+4=82 48×52+4
【解析】
(1)根据题目中的式子的变化规律可以解答本题;
(2)根据题目中的式子的变化规律可以解答本题;
(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
【详解】
解:(1)由题目中的式子可得,
第⑥个等式:6×10+4=82,
故答案为6×10+4=82;
(2)由题意可得,
48×52+4=502,
故答案为48×52+4;
(3)第n个等式是:n×(n+4)+4=(n+2)2,
证明:∵n×(n+4)+4
=n2+4n+4
=(n+2)2,
∴n×(n+4)+4=(n+2)2成立.
【点睛】
本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
22、 (1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次
【解析】
(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;
(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;
(3)利用加权平均数公式求得违章的平均次数,从而求解.
【详解】
解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,
∴中位数为=7,众数是7和8,
故答案为:7、7和8;
(2)补全图形如下:
(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为=7(次),
∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
23、 (1) D、E、F三点是同在一条直线上.(2) 6x2﹣13x+6=1.
【解析】
(1)利用切线长定理及梅氏定理即可求证;
(2)利用相似和韦达定理即可求解.
解:(1)结论:D、E、F三点是同在一条直线上.
证明:分别延长AD、BC交于点K,
由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,
再由切线长定理得:AC+CE=AF,BE=BF,
∴KE=AF.∴,
由梅涅劳斯定理的逆定理可证,D、E、F三点共线,
即D、E、F三点共线.
(2)∵AB=AC=5,BC=6,
∴A、E、I三点共线,CE=BE=3,AE=4,
连接IF,则△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四点共圆.
设⊙I的半径为r,则:,
∴,即,,
∴由△AEF∽△DEI得:
,
∴.
∴,
因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x2﹣13x+6=1.
点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.
24、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩
【解析】
(1)根据题意和表格中的数据可得到y关于x的函数;
(2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.
【详解】
(1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15
即y关于x的函数关系式为y=0.1x+15
(2)由题意得2.4x+2(30-x)≤70
解得x≤25,
∵y=0.1x+15
∴当x=25时,y最大=17.5
30-x=5,
∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.
【点睛】
此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.
相关试卷
这是一份2023年江苏省泰州市海陵区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年江苏省泰州市海陵区中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省泰州市海陵区重点名校2022年中考试题猜想数学试卷含解析,共19页。试卷主要包含了计算-3-1的结果是等内容,欢迎下载使用。