终身会员
搜索
    上传资料 赚现金

    2022届泰州市海陵区重点中学中考适应性考试数学试题含解析

    立即下载
    加入资料篮
    2022届泰州市海陵区重点中学中考适应性考试数学试题含解析第1页
    2022届泰州市海陵区重点中学中考适应性考试数学试题含解析第2页
    2022届泰州市海陵区重点中学中考适应性考试数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届泰州市海陵区重点中学中考适应性考试数学试题含解析

    展开

    这是一份2022届泰州市海陵区重点中学中考适应性考试数学试题含解析,共19页。试卷主要包含了若,则的值为,下列运算正确的是,下列命题正确的是等内容,欢迎下载使用。
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
    A.B.C.D.
    2.下列各组数中,互为相反数的是( )
    A.﹣2 与2B.2与2C.3与D.3与3
    3.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是( )
    A. 或
    B. 或
    C. 或
    D.
    4.若,则的值为( )
    A.12B.2C.3D.0
    5.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )
    A.40B.46C.48D.50
    6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于( )
    A.∠EDBB.∠BEDC.∠EBDD.2∠ABF
    7.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )
    A.B.
    C.D.
    8.下列运算正确的是( )
    A.x•x4=x5B.x6÷x3=x2C.3x2﹣x2=3D.(2x2)3=6x6
    9.下列命题正确的是( )
    A.对角线相等的四边形是平行四边形
    B.对角线相等的四边形是矩形
    C.对角线互相垂直的平行四边形是菱形
    D.对角线互相垂直且相等的四边形是正方形
    10.若正六边形的边长为6,则其外接圆半径为( )
    A.3B.3C.3D.6
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.
    12.百子回归图是由 1,2,3,…,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四 位“19 99 12 20”标示澳门回归日期,最后一行中间两 位“23 50”标示澳门面积,…,同时它也是十阶幻方, 其每行 10 个数之和、每列 10 个数之和、每条对角线10 个数之和均相等,则这个和为______.
    百 子 回 归
    13.如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_____.
    14.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
    15.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.
    16.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.
    17.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
    (1)求∠EPF的大小;
    (2)若AP=6,求AE+AF的值.
    19.(5分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.
    (1)求证:PC是⊙O的切线;
    (2)若PC=3,PF=1,求AB的长.
    20.(8分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cs36°≈0.1,tan36°≈0.73,取1.414
    21.(10分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
    请根据表格提供的信息,解答以下问题:
    (1)本次决赛共有 名学生参加;
    (2)直接写出表中a= ,b= ;
    (3)请补全下面相应的频数分布直方图;
    (4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
    22.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:
    求甲、乙两种节能灯各进多少只?
    全部售完100只节能灯后,该商场获利多少元?
    23.(12分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)
    24.(14分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
    (1)求证:BE=DF;
    (2)当t= 秒时,DF的长度有最小值,最小值等于 ;
    (3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
    【详解】
    ∵这组数中无理数有,共2个,
    ∴卡片上的数为无理数的概率是 .
    故选B.
    【点睛】
    本题考查了无理数的定义及概率的计算.
    2、A
    【解析】
    根据只有符号不同的两数互为相反数,可直接判断.
    【详解】
    -2与2互为相反数,故正确;
    2与2相等,符号相同,故不是相反数;
    3与互为倒数,故不正确;
    3与3相同,故不是相反数.
    故选:A.
    【点睛】
    此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.
    3、B
    【解析】
    试题解析:如图所示:
    分两种情况进行讨论:
    当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
    当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
    故选B.
    点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
    开口向上,开口向下.
    的绝对值越大,开口越小.
    4、A
    【解析】
    先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.
    【详解】
    ∵,
    ∴,
    ∴.
    故选:A.
    【点睛】
    本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.
    5、C
    【解析】
    ∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,
    ∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,
    ∴∠ABD=∠ACF,
    又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,
    ∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,
    ∵BF=AB+AF=12,∴3AF=12,∴AF=4,
    ∴AB=AC=2AF=8,
    ∴S△FBC= ×BF×AC=×12×8=48,故选C.
    6、C
    【解析】
    根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.
    【详解】
    在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.
    【点睛】
    .
    本题主要考查全等三角形的判定与性质,熟悉掌握是关键.
    7、A
    【解析】
    试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.
    8、A
    【解析】
    根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:
    A、x•x4=x5,原式计算正确,故本选项正确;
    B、x6÷x3=x3,原式计算错误,故本选项错误;
    C、3x2﹣x2=2x2,原式计算错误,故本选项错误;
    D、(2x2)3=8x,原式计算错误,故本选项错误.
    故选A.
    9、C
    【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
    详解:对角线互相平分的四边形是平行四边形,A错误;
    对角线相等的平行四边形是矩形,B错误;
    对角线互相垂直的平行四边形是菱形,C正确;
    对角线互相垂直且相等的平行四边形是正方形;
    故选:C.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    10、D
    【解析】
    连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
    【详解】
    如图为正六边形的外接圆,ABCDEF是正六边形,
    ∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.
    所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
    故选D.
    【点睛】
    本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
    二、填空题(共7小题,每小题3分,满分21分)
    11、6°
    【解析】
    ∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,
    ∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.
    12、505
    【解析】
    根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10,代入求解即可.
    【详解】
    1~100的总和为: =5050,
    一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=5050÷10=505,
    故答案为505.
    【点睛】
    本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案
    13、
    【解析】
    根据
    ,只要求出、
    即可解决问题;
    【详解】
    ∵四边形是平行四边形,







    .
    故答案为.
    【点睛】
    本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.
    14、15π
    【解析】
    【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
    【详解】设圆锥母线长为l,∵r=3,h=4,
    ∴母线l=,
    ∴S侧=×2πr×5=×2π×3×5=15π,
    故答案为15π.
    【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
    15、1
    【解析】
    估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.
    【详解】
    因为共摸了200次球,发现有60次摸到黑球,
    所以估计摸到黑球的概率为0.3,
    所以估计这个口袋中黑球的数量为20×0.3=6(个),
    则红球大约有20-6=1个,
    故答案为:1.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    16、
    【解析】
    ∵在Rt△ABC中,BC=6,sinA=
    ∴AB=10
    ∴.
    ∵D是AB的中点,∴AD=AB=1.
    ∵∠C=∠EDA=90°,∠A=∠A
    ∴△ADE∽△ACB,


    解得:DE=.
    17、1
    【解析】
    根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.
    【详解】
    解:设点A的坐标为,
    过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,
    点,
    点B的坐标为,

    解得,,
    故答案为:1.
    【点睛】
    本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    三、解答题(共7小题,满分69分)
    18、(1)∠EPF=120°;(2)AE+AF=6.
    【解析】
    试题分析: (1)过点P作PG⊥EF于G,解直角三角形即可得到结论;
    (2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,Rt△PME≌Rt△PNF,问题即可得证.
    试题解析:
    (1)如图1,过点P作PG⊥EF于G,
    ∵PE=PF,
    ∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
    在△FPG中,sin∠FPG= ,
    ∴∠FPG=60°,
    ∴∠EPF=2∠FPG=120°;
    (2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,
    ∵四边形ABCD是菱形,
    ∴AD=AB,DC=BC,
    ∴∠DAC=∠BAC,
    ∴PM=PN,
    在Rt△PME于Rt△PNF中,

    ∴Rt△PME≌Rt△PNF,
    ∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM= ∠DAB=30°,
    ∴AM=AP•cs30°=3 ,同理AN=3 ,
    ∴AE+AF=(AM-EM)+(AN+NF)=6.
    【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.
    19、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可;
    (2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.
    试题解析:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线;
    (2)延长PO交圆于G点,∵PF×PG=,PC=3,PF=1,∴PG=9,∴FG=9﹣1=1,∴AB=FG=1.
    考点:切线的判定;切割线定理.
    20、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【解析】
    根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
    【详解】
    解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
    在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
    ∵∠CBD=15°,∴BD=CD=2.
    在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.
    答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【点睛】
    本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
    21、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
    【解析】
    试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
    试题解析:(1)2÷0.04=50
    (2)50×0.32=16 14÷50=0.28
    (3)
    (4)(0.32+0.16)×100%=48%
    考点:频数分布直方图
    22、甲、乙两种节能灯分别购进40、60只;商场获利1300元.
    【解析】
    (1)利用节能灯数量和所用的价钱建立方程组即可;
    (2)每种灯的数量乘以每只灯的利润,最后求出之和即可.
    【详解】
    (1)设商场购进甲种节能灯x只,购进乙种节能灯y只,
    根据题意,得,
    解这个方程组,得 ,
    答:甲、乙两种节能灯分别购进40、60只.
    (2)商场获利元,
    答:商场获利1300元.
    【点睛】
    此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.
    23、5.5米
    【解析】
    过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.
    【详解】
    解:过点C作CD⊥AB于点D,
    设CD=x,
    在Rt△ACD中,∠CAD=30°,则AD=CD=x.
    在Rt△BCD中,∠CBD=45°,则BD=CD=x.
    由题意得,x﹣x=4,
    解得:.
    答:生命所在点C的深度为5.5米.
    24、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形
    【解析】
    (1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;
    (2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
    (3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;
    ②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.
    【详解】
    (1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
    ∴∠DCF=∠BCE,
    ∵四边形ABCD是菱形,
    ∴DC=BC,
    在△DCF和△BCE中,
    ,
    ∴△DCF≌△BCE(SAS),
    ∴DF=BE;
    (2)如图1,作BE′⊥DA交DA的延长线于E′.
    当点E运动至点E′时,DF=BE′,此时DF最小,
    在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,
    ∴设AE′=x,则BE′=2x,
    ∴AB=x=6,x=6,
    则AE′=6
    ∴DE′=6+6,DF=BE′=12,
    时间t=6+6,
    故答案为:6+6,12;
    (3)∵CE=CF,
    ∴∠CEQ<90°,
    ①当∠EQP=90°时,如图2①,
    ∵∠ECF=∠BCD,BC=DC,EC=FC,
    ∴∠CBD=∠CEF,
    ∵∠BPC=∠EPQ,
    ∴∠BCP=∠EQP=90°,
    ∵AB=CD=6,tan∠ABC=tan∠ADC=2,
    ∴DE=6,
    ∴t=6秒;
    ②当∠EPQ=90°时,如图2②,
    ∵菱形ABCD的对角线AC⊥BD,
    ∴EC与AC重合,
    ∴DE=6,
    ∴t=6秒,
    综上所述,t=6秒或6秒时,△EPQ是直角三角形.
    【点睛】
    此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.
    组别
    成绩(分)
    频数(人数)
    频率

    2
    0.04

    10
    0.2

    14
    b

    a
    0.32

    8
    0.16
    进价元只
    售价元只
    甲种节能灯
    30
    40
    乙种节能灯
    35
    50

    相关试卷

    2022年江苏省泰州市海陵区中考数学二模试卷(含解析):

    这是一份2022年江苏省泰州市海陵区中考数学二模试卷(含解析),共27页。

    2022届遂宁市重点中学中考适应性考试数学试题含解析:

    这是一份2022届遂宁市重点中学中考适应性考试数学试题含解析,共25页。试卷主要包含了下列说法中,正确的是,已知等内容,欢迎下载使用。

    2022届泰州市海陵区重点中学中考数学全真模拟试卷含解析:

    这是一份2022届泰州市海陵区重点中学中考数学全真模拟试卷含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map