2021-2022学年江苏省无锡市小黄卷中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )
A.12 B.14 C.15 D.25
2.下列计算正确的是( )
A.a+a=2a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a7
3.下列运算结果是无理数的是( )
A.3× B. C. D.
4.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为( )
A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×107
5.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是( )
A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20
6.若分式的值为0,则x的值为( )
A.-2 B.0 C.2 D.±2
7.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )
A.70° B.60° C.55° D.50°
8.下列函数中,当x>0时,y值随x值增大而减小的是( )
A.y=x2 B.y=x﹣1 C. D.
9.如图,中,,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的
A. B. C. D.
10.下列图形中,阴影部分面积最大的是
A. B. C. D.
11.已知x2+mx+25是完全平方式,则m的值为( )
A.10 B.±10 C.20 D.±20
12.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )
A.10cm B.20cm C.10πcm D.20πcm
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.
14.因式分解a3-6a2+9a=_____.
15.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.
16.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.
17.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.
18.规定用符号表示一个实数的整数部分,例如:,.按此规定,的值为________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.
(1)求m的值及该抛物线对应的解析式;
(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;
(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.
20.(6分)解方程:x2-4x-5=0
21.(6分)如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请判断四边形AEA′F的形状,并说明理由;
(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.
22.(8分)图 1 和图 2 中,优弧纸片所在⊙O 的半径为 2,AB=2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A′.
发现:
(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA′= ;
(2)当 BA′与⊙O 相切时,如图 2,求折痕的长.
拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A′, O′,设∠MNP=α.
(1)当α=15°时,过点 A′作 A′C∥MN,如图 3,判断 A′C 与半圆 O 的位置关系,并说明理由;
(2)如图 4,当α= °时,NA′与半圆 O 相切,当α= °时,点 O′落在上.
(3)当线段 NO′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.
23.(8分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.
24.(10分)如图,在边长为1 个单位长度的小正方形网格中:
(1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A1B1C1.
(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.
(3)求△CC1C2的面积.
25.(10分)列方程解应用题:
某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
26.(12分)如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.
若∠AOD=45°,求证:CE=ED;(2)若AE=EO,求tan∠AOD的值.
27.(12分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(1)求证:AC是△BDE的外接圆的切线;
(2)若AD=2,AE=6,求EC的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
【详解】
∴三角形的两边长分别为5和7,
∴2<第三条边<12,
∴5+7+2<三角形的周长<5+7+12,
即14<三角形的周长<24,
故选C.
【点睛】
本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.
2、A
【解析】
根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.
【详解】
A.a+a=2a,故本选项正确;
B.,故本选项错误;
C. ,故本选项错误;
D.,故本选项错误.
故选:A.
【点睛】
考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.
3、B
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
A选项:原式=3×2=6,故A不是无理数;
B选项:原式=,故B是无理数;
C选项:原式==6,故C不是无理数;
D选项:原式==12,故D不是无理数
故选B.
【点睛】
考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
4、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将4670000用科学记数法表示为4.67×106,
故选B.
【点睛】
本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.
5、A
【解析】
若反比例函数与三角形交于A(4,5),则k=20;
若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.
故选A.
6、C
【解析】
由题意可知:,
解得:x=2,
故选C.
7、A
【解析】
试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.
考点:平行线的性质.
8、D
【解析】
A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误
B、k>0,y随x增大而增大,故此选项错误
C、B、k>0,y随x增大而增大,故此选项错误
D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确
9、D
【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
【详解】
解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
10、C
【解析】
分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:
【详解】
A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1.
B、根据反比例函数系数k的几何意义,阴影部分面积和为:.
C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,
根据反比例函数系数k的几何意义,S△OAM=S△OAM=,从而阴影部分面积和为梯形MABN的面积:.
D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:.
综上所述,阴影部分面积最大的是C.故选C.
11、B
【解析】
根据完全平方式的特点求解:a2±2ab+b2.
【详解】
∵x2+mx+25是完全平方式,
∴m=±10,
故选B.
【点睛】
本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
12、A
【解析】
试题解析:扇形的弧长为:=20πcm,
∴圆锥底面半径为20π÷2π=10cm,
故选A.
考点:圆锥的计算.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据相似三角形的对应边的比相等列出比例式,计算即可.
【详解】
∵△ADE∽△ACB,∴=,即=,
解得:BD=1.
故答案为1.
【点睛】
本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.
14、a(a-3)2
【解析】
根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.
【详解】
解:
故答案为:.
【点睛】
本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.
15、相离
【解析】
设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.
【详解】
设圆O的半径是r,
则πr2=9π,
∴r=3,
∵点0到直线l的距离为π,
∵3<π,
即:r<d,
∴直线l与⊙O的位置关系是相离,
故答案为:相离.
【点睛】
本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.
16、46
【解析】
试卷分析:根据平行线的性质和平角的定义即可得到结论.
解:∵直线a∥b,
∴∠3=∠1=34°,
∵∠BAC=100°,
∴∠2=180°−34°−100°=46°,
故答案为46°.
17、(4,2).
【解析】
利用图象旋转和平移可以得到结果.
【详解】
解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,
则BD′=OD=2,
∴点D坐标为(4,6);
当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,
∴点D向下平移4个单位.故点D′′坐标为(4,2),
故答案为(4,2).
【点睛】
平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.
定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.
18、4
【解析】
根据规定,取的整数部分即可.
【详解】
∵,∴
∴整数部分为4.
【点睛】
本题考查无理数的估值,熟记方法是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)(,1)( ,1);(3)存在,,,,
【解析】
试题分析:(1)将x=-2代入y=-2x-1即可求得点B的坐标,根据抛物线过点A、O、B即可求出抛物线的方程.
(2)根据题意,可知△ADP和△ADC的高相等,即点P纵坐标的绝对值为1,所以点P的纵坐标为 ,分别代入中求解,即可得到所有符合题意的点P的坐标.
(3)由抛物线的解析式为 ,得顶点E(2,﹣1),对称轴为x=2;
点F是直线y=﹣2x﹣1与对称轴x=2的交点,求出F(2,﹣1),DF=1.
又由A(4,0),根据勾股定理得 .然后分4种情况求解.
点睛:(1)首先求出点B的坐标和m的值,然后利用待定系数法求出抛物线的解析式;
(2)△ADP与△ADC有共同的底边AD,因为面积相等,所以AD边上的高相等,即为1;从而得到点P的纵坐标为1,再利用抛物线的解析式求出点P的纵坐标;
(3)如解答图所示,在点M的运动过程中,依次出现四个菱形,注意不要漏解.针对每一个菱形,分别进行计算,求出线段MF的长度,从而得到运动时间t的值.
20、x1 ="-1," x2 =5
【解析】
根据十字相乘法因式分解解方程即可.
21、(1)四边形AEA′F为菱形.理由见解析;(2)1.
【解析】
(1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=••6•6,然后利用算术平方根的定义求AE即可.
【详解】
(1)四边形AEA′F为菱形.
理由如下:
∵AB=AC,
∴∠B=∠C,
∵EF∥BC,
∴∠AEF=∠B,∠AFE=∠C,
∴∠AEF=∠AFE,
∴AE=AF,
∵△AEF沿着直线EF向下翻折,得到△A′EF,
∴AE=A′E,AF=A′F,
∴AE=A′E=AF=A′F,
∴四边形AEA′F为菱形;
(2)∵四边形AEA′F是正方形,
∴∠A=90°,
∴△ABC为等腰直角三角形,
∴AB=AC=BC=×6=6,
∵正方形AEA′F的面积是△ABC的一半,
∴AE2=••6•6,
∴AE=1.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
22、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或 45°≤α<90°.
【解析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;
(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;
(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
【详解】
发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,
∵⊙O的半径为2,AB=2,
∴OH==
在△BOH中,OH=1,BO=2
∴∠ABO=30°
∵图形沿BP折叠,得到点A的对称点A′.
∴∠OBA′=∠ABO=30°
∴∠ABA′=60°
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
∵∠OBH=30°,∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.∴OG=OB=1.∴BG=.
∵OG⊥BP,∴BG=PG=.
∴BP=2.∴折痕的长为2
拓展:(1)相切.
分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
∵A'C∥MN
∴四边形A'HOD是矩形
∴A'H=O
∵α=15°∴∠A'NH=30
∴OD=A'H=A'N=MN=2
∴A'C与半圆
(2)当NA′与半圆O相切时,则ON⊥NA′,
∴∠ONA′=2α=90°,
∴α=45
当O′在上时,连接MO′,则可知NO′=MN,
∴∠O′MN=0°
∴∠MNO′=60°,
∴α=30°,
故答案为:45°;30°.
(3)∵点P,M不重合,∴α>0,
由(2)可知当α增大到30°时,点O′在半圆上,
∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
∴α<90°,
∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
综上所述0°<α<30°或45°≤α<90°.
【点睛】
本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
23、
【解析】
过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.
【详解】
解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,
∵房子后坡度AB与前坡度AC相等,
∴∠BAD=∠CAE,
∵∠BAC=120°,
∴∠BAD=∠CAE=30°,
在直角△ABD中,AB=4米,
∴BD=2米,
在直角△ACE中,AC=6米,
∴CE=3米,
∴a-b=1米.
【点睛】
本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.
24、(1)见解析 (2)见解析 (3) 9
【解析】
试题分析:(1)将△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1,如图所示;
(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,如图所示.
试题解析:(1)根据题意画出图形,△A1B1C1为所求三角形;
(2)根据题意画出图形,△A2B2C2为所求三角形.
考点:1.作图-位似变换,2. 作图-平移变换
25、2.4元/米
【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
【详解】
解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
由题意列方程得:
解得
经检验,是原方程的解
(元/立方米)
答:今年居民用水的价格为每立方米元.
【点睛】
此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
26、(1)见解析;(2)tan∠AOD=.
【解析】
(1)作DF⊥AB于F,连接OC,则△ODF是等腰直角三角形,得出OC=OD=DF,由垂径定理得出∠COE=90°,证明△DEF∽△CEO得出,即可得出结论;
(2)由题意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,设⊙O的半径为2a(a>0),则OD=2a,EO=a,设EF=x,则DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函数定义即可得出结果.
【详解】
(1)证明:作DF⊥AB于F,连接OC,如图所示:
则∠DFE=90°,
∵∠AOD=45°,
∴△ODF是等腰直角三角形,
∴OC=OD=DF,
∵C是弧AB的中点,
∴OC⊥AB,
∴∠COE=90°,
∵∠DEF=∠CEO,
∴△DEF∽△CEO,
∴,
∴CE=ED;
(2)如图所示:
∵AE=EO,
∴OE=OA=OC,
同(1)得:,△DEF∽△CEO,
∴,
设⊙O的半径为2a(a>0),则OD=2a,EO=a,
设EF=x,则DF=2x,
在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,
解得:x=a,或x=﹣a(舍去),
∴DF=a,OF=EF+EO=a,
∴.
【点睛】
本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键.
27、(1)证明见解析;(2)1.
【解析】
试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;
(2)设⊙O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE∥BC得,然后根据比例性质可计算出EC.
试题解析:(1)证明:取BD的中点0,连结OE,如图,
∵DE⊥EB,
∴∠BED=90°,
∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠EB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴OE⊥AE,
∴AC是△BDE的外接圆的切线;
(2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,
在Rt△AEO中,∵AE2+OE2=AO2,
∴62+r2=(r+2)2,解得r=2,
∵OE∥BC,
∴,即,
∴CE=1.
考点:1、切线的判定;2、勾股定理
江苏省无锡市积余教育集团2021-2022学年中考试题猜想数学试卷含解析: 这是一份江苏省无锡市积余教育集团2021-2022学年中考试题猜想数学试卷含解析,共26页。试卷主要包含了化简的结果为等内容,欢迎下载使用。
2021-2022学年江苏省无锡市宜兴市丁蜀区市级名校中考试题猜想数学试卷含解析: 这是一份2021-2022学年江苏省无锡市宜兴市丁蜀区市级名校中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022学年江苏省无锡市小黄卷中考冲刺卷数学试题含解析: 这是一份2021-2022学年江苏省无锡市小黄卷中考冲刺卷数学试题含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集是,方程的解是等内容,欢迎下载使用。