2021-2022学年内蒙古突泉县六户中学中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
A.-4或-14 B.-4或14 C.4或-14 D.4或14
2.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )
A. B. C. D.±
3.下列各式中的变形,错误的是(( )
A. B. C. D.
4.下列方程中,没有实数根的是( )
A. B.
C. D.
5.在实数0,-π,,-4中,最小的数是( )
A.0 B.-π C. D.-4
6.一个多边形的每一个外角都等于72°,这个多边形是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
7.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是( )
A. B. C. D.
8.已知,则的值为
A. B. C. D.
9.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.
说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.
根据上述信息,下列结论中错误的是( )
A.2017年第二季度环比有所提高
B.2017年第三季度环比有所提高
C.2018年第一季度同比有所提高
D.2018年第四季度同比有所提高
10.如图是某零件的示意图,它的俯视图是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.方程3x(x-1)=2(x-1)的根是
12.如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动
连接,线段的长随的变化而变化,当最大时,______.当的边与坐标轴平行时,______.
13.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 .
14.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.
53×57=3021,38×32=1216,84×86=7224,71×79=2.
(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的 ,请写出一个符合上述规律的算式 .
(2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律.
15.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.
16.一个正四边形的内切圆半径与外接圆半径之比为:_________________
17.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________
三、解答题(共7小题,满分69分)
18.(10分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
生产甲产品件数(件)
生产乙产品件数(件)
所用总时间(分钟)
10
10
350
30
20
850
(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
①用含a的代数式表示小王四月份生产乙种产品的件数;
②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
19.(5分)如图,菱形中,分别是边的中点.求证:.
20.(8分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC
(1)求证:四边形ACDE为平行四边形;
(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长.
21.(10分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)
22.(10分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
23.(12分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
24.(14分)综合与探究:
如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
(1)求A、B两点的坐标及直线l的表达式;
(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
①请直接写出A′的坐标(用含字母t的式子表示);
②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
【详解】
∵一条抛物线的函数表达式为y=x2+6x+m,
∴这条抛物线的顶点为(-3,m-9),
∴关于x轴对称的抛物线的顶点(-3,9-m),
∵它们的顶点相距10个单位长度.
∴|m-9-(9-m)|=10,
∴2m-18=±10,
当2m-18=10时,m=1,
当2m-18=-10时,m=4,
∴m的值是4或1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
2、D
【解析】
根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组 ,求出方程组的解即可.
【详解】
解:设一次函数的解析式为:y=kx,
把点(−3,2a)与点(8a,−3)代入得出方程组 ,
由①得:,
把③代入②得: ,
解得:.
故选:D.
【点睛】
本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.
3、D
【解析】
根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
【详解】
A、,故A正确;
B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
D、≠,故D错误;
故选:D.
【点睛】
本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
4、B
【解析】
分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
【详解】
解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
故选:B.
【点睛】
本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
5、D
【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
∵正数大于0和一切负数,
∴只需比较-π和-1的大小,
∵|-π|<|-1|,
∴最小的数是-1.
故选D.
【点睛】
此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
6、C
【解析】
任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
【详解】
360°÷72°=1,则多边形的边数是1.
故选C.
【点睛】
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
7、B
【解析】
分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.
详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
故选B.
点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.
8、C
【解析】
由题意得,4−x⩾0,x−4⩾0,
解得x=4,则y=3,则=,
故选:C.
9、C
【解析】
根据环比和同比的比较方法,验证每一个选项即可.
【详解】
2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;
2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;
2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;
2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;
故选C.
【点睛】
本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.
10、C
【解析】
物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.
【详解】
从上面看是一个正六边形,里面是一个没有圆心的圆.
故答案选C.
【点睛】
本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.
二、填空题(共7小题,每小题3分,满分21分)
11、x1=1,x2=-.
【解析】
试题解析:3x(x-1)=2(x-1)
3x(x-1)-2 (x-1) =0
(3x-2)(x-1)=0
3x-2=0,x-1=0
解得:x1=1,x2=-.
考点:解一元二次方程---因式分解法.
12、4
【解析】
(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;
(2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.
【详解】
(1),
,
当O,D,C共线时,OC取最大值,此时OD⊥AB.
∵,
∴△AOB为等腰直角三角形,
∴ ;
(2)∵BC=AC,CD为AB边的高,
∴∠ADC=90°,BD=DA=AB=4,
∴CD==3,
当AC∥y轴时,∠ABO=∠CAB,
∴Rt△ABO∽Rt△CAD,
∴,即,
解得,t=,
当BC∥x轴时,∠BAO=∠CBD,
∴Rt△ABO∽Rt△BCD,
∴,即,
解得,t= ,
则当t=或时,△ABC的边与坐标轴平行.
故答案为t=或.
【点睛】
本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
13、.
【解析】
试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.
考点:扇形的面积计算.
14、 (1)十位和个位,44×46=2024;(2) 10a(a+1)+b(1﹣b)
【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案.
详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,
例如:44×46=2024,
(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).
点睛:本题主要考查的是规律的发现与整理,属于基础题型.找出一般性的规律是解决这个问题的关键.
15、-6
【解析】
因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:
,解得
16、
【解析】
如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,利用正方形的性质得到OH为正方形ABCD的内切圆的半径,∠OAB=45°,然后利用等腰直角三角形的性质得OA=OH即可解答.
【详解】
解:如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,
则OH为正方形ABCD的内切圆的半径,
∵∠OAB=45°,
∴OA=OH,
∴
即一个正四边形的内切圆半径与外接圆半径之比为,
故答案为:.
【点睛】
本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念.
17、
【解析】
作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
【详解】
如图,分别连接OA、OB、OD;
∵OA=OB= ,AB=2,
∴△OAB是等腰直角三角形,
∴∠OAB=45°;
同理可证:∠OAD=45°,
∴∠DAB=90°;
∵∠CAB=60°,
∴∠DAC=90°−60°=30°,
∴旋转角的正切值是,
故答案为:.
【点睛】
此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.
三、解答题(共7小题,满分69分)
18、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
【解析】
(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
(2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
②根据“小王四月份的工资不少于1500元”即可列出不等式.
【详解】
(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:
,
解这个方程组得:,
答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
∴一小时生产甲产品4件,生产乙产品3件,
所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
②依题意:1.5a+2.8(600-)≥1500,
1680﹣0.6a≥1500,
解得:a≤1.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
19、证明见解析.
【解析】
根据菱形的性质,先证明△ABE≌△ADF,即可得解.
【详解】
在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.
∵点E,F分别是BC,CD边的中点,
∴BE=BC,DF=CD,
∴BE=DF.
∴△ABE≌△ADF,
∴AE=AF.
20、(1)证明见解析;(2)4.
【解析】
(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)连接 EC,易证△BEC 是直角三角形,解直角三角形即可解决问题.
【详解】
(1)证明:∵四边形 ABCD 是平行四边形,
∴AB∥CD,AB=CD,
∵AE=AB,
∴AE=CD,∵AE∥CD,
∴四边形 ACDE 是平行四边形.
(2)如图,连接 EC.
∵AC=AB=AE,
∴△EBC 是直角三角形,
∵cosB==,BE=6,
∴BC=2,
∴EC===4.
【点睛】
本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21、DE的长度为6+1.
【解析】
根据相似三角形的判定与性质解答即可.
【详解】
解:过E作EF⊥BC,
∵∠CDE=120°,
∴∠EDF=60°,
设EF为x,DF=x,
∵∠B=∠EFC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EFC,
∴,
即,
解得:x=9+2,
∴DE==6+1,
答:DE的长度为6+1.
【点睛】
本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
22、 (1) BH为10米;(2) 宣传牌CD高约(40﹣20)米
【解析】
(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.
【详解】
(1)过B作BH⊥AE于H,
Rt△ABH中,∠BAH=30°,
∴BH=AB=×20=10(米),
即点B距水平面AE的高度BH为10米;
(2)过B作BG⊥DE于G,
∵BH⊥HE,GE⊥HE,BG⊥DE,
∴四边形BHEG是矩形.
∵由(1)得:BH=10,AH=10,
∴BG=AH+AE=(10+30)米,
Rt△BGC中,∠CBG=45°,
∴CG=BG=(10+30)米,
∴CE=CG+GE=CG+BH=10+30+10=10+40(米),
在Rt△AED中,
=tan∠DAE=tan60°=,
DE=AE=30
∴CD=CE﹣DE=10+40﹣30=40﹣20.
答:宣传牌CD高约(40﹣20)米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.
23、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
【解析】
试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.
24、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
(2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
(3)存在,P点坐标为(,)或(,﹣).
【解析】
(1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
【详解】
(1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
设直线l的解析式为y=kx+b,
把A(﹣1,0),D(0,﹣)代入得,解得,
∴直线l的解析式为y=﹣x﹣;
(2)①作A′H⊥x轴于H,如图,
∵OA=1,OD=,
∴∠OAD=60°,
∵EF∥AD,
∴∠AEF=60°,
∵点A 关于直线l的对称点为A′,
∴EA=EA′=t,∠A′EF=∠AEF=60°,
在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
∴OH=OE+EH=t﹣1+t=t﹣1,
∴A′(t﹣1, t);
②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
解得t1=0(舍去),t2=2,
∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
此时四边形A′BEF为菱形,理由如下:
当t=2时,A′点的坐标为(2,),E(1,0),
∵∠OEF=60°
∴OF=OE=,EF=2OE=2,
∴F(0,),
∴A′F∥x轴,
∵A′F=BE=2,A′F∥BE,
∴四边形A′BEF为平行四边形,
而EF=BE=2,
∴四边形A′BEF为菱形;
(3)存在,如图:
当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
∵OE=t﹣1=,
∴此时P点坐标为(,);
当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,
∵∠AEA′=120°,
∴∠A′EB=60°,
∴∠EBA′=30°
∴BQ=A′Q=•t=t,
∴t﹣1+t=3,解得t=,
此时A′(1,),E(,0),
点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
综上所述,满足条件的P点坐标为(,)或(,﹣).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
内蒙古突泉县六户中学2023-2024学年数学八上期末调研试题含答案: 这是一份内蒙古突泉县六户中学2023-2024学年数学八上期末调研试题含答案,共8页。试卷主要包含了若要使等式成立,则等于等内容,欢迎下载使用。
昭通市重点中学2021-2022学年中考数学模拟预测题含解析: 这是一份昭通市重点中学2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-2的绝对值是,的相反数是,下列计算正确的是等内容,欢迎下载使用。
上海市存志中学2021-2022学年中考数学模拟预测题含解析: 这是一份上海市存志中学2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了下列等式正确的是等内容,欢迎下载使用。