昭通市重点中学2021-2022学年中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下面几何的主视图是( )
A. B. C. D.
2.已知二次函数 图象上部分点的坐标对应值列表如下:
x
…
-3
-2
-1
0
1
2
…
y
…
2
-1
-2
-1
2
7
…
则该函数图象的对称轴是( )
A.x=-3 B.x=-2 C.x=-1 D.x=0
3.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
4.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:
x
-1
0
1
3
y
3
3
下列结论:
(1)abc<0
(2)当x>1时,y的值随x值的增大而减小;
(3)16a+4b+c<0
(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为( )
A.4个 B.3个 C.2个 D.1个
5.-2的绝对值是()
A.2 B.-2 C.±2 D.
6.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是( )
A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
7.的相反数是( )
A. B.- C. D.
8.对于一组统计数据1,1,6,5,1.下列说法错误的是( )
A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
9.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是
A.8 B.9 C.10 D.12
10.下列计算正确的是( )
A.3a2﹣6a2=﹣3
B.(﹣2a)•(﹣a)=2a2
C.10a10÷2a2=5a5
D.﹣(a3)2=a6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:2(a-b)+3b=___________.
12.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为_____.
13.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.
14.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.
15.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.
16.计算×3结果等于_____.
三、解答题(共8题,共72分)
17.(8分) 如图,在平面直角坐标系中,直线y1=2x+b与坐标轴交于A、B两点,与双曲线 (x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,点B的坐标为(0,﹣2).
(1)求直线y1=2x+b及双曲线(x>0)的表达式;
(2)当x>0时,直接写出不等式的解集;
(3)直线x=3交直线y1=2x+b于点E,交双曲线(x>0)于点F,求△CEF的面积.
18.(8分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知: ,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值.
19.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.
20.(8分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.
21.(8分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.
(1)求点C与点A的距离(精确到1km);
(2)确定点C相对于点A的方向.
(参考数据:)
22.(10分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.
(1)当y1﹣y2=4时,求m的值;
(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).
23.(12分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.
(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;
(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
24.化简:(x+7)(x-6)-(x-2)(x+1)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
主视图是从物体正面看所得到的图形.
【详解】
解:从几何体正面看
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
2、C
【解析】
由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
【详解】
解:∵x=-2和x=0时,y的值相等,
∴二次函数的对称轴为,
故答案为:C.
【点睛】
本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
3、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
4、B
【解析】
(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;
(2)求得对称轴,即可判定此结论错误;
(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;
(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.
【详解】
(1)∵x=-1时y=-,x=0时,y=3,x=1时,y=,
∴,
解得
∴abc<0,故正确;
(2)∵y=-x2+x+3,
∴对称轴为直线x=-=,
所以,当x>时,y的值随x值的增大而减小,故错误;
(3)∵对称轴为直线x=,
∴当x=4和x=-1时对应的函数值相同,
∴16a+4b+c<0,故正确;
(4)当x=3时,二次函数y=ax2+bx+c=3,
∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;
综上所述,结论正确的是(1)(3)(4).
故选:B.
【点睛】
本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.
5、A
【解析】
根据绝对值的性质进行解答即可
【详解】
解:﹣1的绝对值是:1.
故选:A.
【点睛】
此题考查绝对值,难度不大
6、D
【解析】
依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
【详解】
解:∵∠ACD是△ABC的外角,
∴∠ACD=∠BAC+∠B,
∵CE平分∠DCA,
∴∠ACD=2∠ACE,
∴2∠ACE=∠BAC+∠B,故A选项正确;
∵EF∥BC,CF平分∠BCA,
∴∠BCF=∠CFE,∠BCF=∠ACF,
∴∠ACF=∠EFC,
∴OF=OC,
同理可得OE=OC,
∴EF=2OC,故B选项正确;
∵CF平分∠BCA,CE平分∠ACD,
∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
∵O不一定是AC的中点,
∴四边形AECF不一定是平行四边形,
∴四边形AFCE不一定是矩形,故D选项错误,
故选D.
【点睛】
本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
7、C
【解析】
根据只有符号不同的两个数互为相反数进行解答即可.
【详解】
与只有符号不同,
所以的相反数是,
故选C.
【点睛】
本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
8、D
【解析】
根据中位数、众数、方差等的概念计算即可得解.
【详解】
A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
B、由平均数公式求得这组数据的平均数为4,故此选项正确;
C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
故选D.
考点:1.众数;2.平均数;1.方差;4.中位数.
9、A
【解析】
试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.
解:设这个多边形的外角为x°,则内角为3x°,
由题意得:x+3x=180,
解得x=45,
这个多边形的边数:360°÷45°=8,
故选A.
考点:多边形内角与外角.
10、B
【解析】
根据整式的运算法则分别计算可得出结论.
【详解】
选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;
选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;
选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;
选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.
故答案选B.
考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2a+b.
【解析】
先去括号,再合并同类项即可得出答案.
【详解】
原式=2a-2b+3b
=2a+b.
故答案为:2a+b.
12、
【解析】
分析:以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.
详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°.∵⊙O的直径为AB,C为的中点,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的.又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.
故答案为2π.
点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.
13、1
【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.
解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,
∴y=(8-x)x,即y=-x2+8x,
∴当x=- =1时,y取得最大值.
故答案为:1.
14、1.2×10﹣1.
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:12纳米=12×0.000000001米=1.2×10−1米.
故答案为1.2×10−1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
15、
【解析】
首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.
【详解】
在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′为等边三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,
∴A′D=CA′=1,CD=A′D=,
∴.
故答案为:
【点睛】
本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.
16、1
【解析】
根据二次根式的乘法法则进行计算即可.
【详解】
故答案为:1.
【点睛】
考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.
三、解答题(共8题,共72分)
17、(1)直线解析式为y1=2x﹣2,双曲线的表达式为y2= (x>0);(2)0<x<2;
(3)
【解析】
(1)将点B的代入直线y1=2x+b,可得b,则可以求得直线解析式;令y=0可得A点坐标为(1,0),又因为OA=AD,则D点坐标为(2,0),把x=2代入直线解析式,可得y=2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2= ,可得k=4,则双曲线的表达式为y2= (x>0).
(2)由x的取值范围,结合图像可求得答案.
(3)把x=3代入y2函数,可得y= ;把x=3代入y1函数,可得y=4,从而得到EF,由三角形的面积公式可得S△CEF=.
【详解】
解:(1)将点B的坐标(0,﹣2)代入直线y1=2x+b,可得
﹣2=b,
∴直线解析式为y1=2x﹣2,
令y=0,则x=1,
∴A(1,0),
∵OA=AD,
∴D(2,0),
把x=2代入y1=2x﹣2,可得
y=2,
∴点C的坐标为(2,2),
把(2,2)代入双曲线y2= ,可得k=2×2=4,
∴双曲线的表达式为y2= (x>0);
(2)当x>0时,不等式>2x+b的解集为0<x<2;
(3)把x=3代入y2=,可得y= ;把x=3代入y1=2x﹣2,可得y=4,
∴EF=4﹣=,
∴S△CEF=××(3﹣2)=,
∴△CEF的面积为.
【点睛】
本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.
18、(1);(2);(3)或
【解析】
(1)如图2,连接OP,则DF与半圆相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;
(2)利用,求出,则;DF与半圆相切,由(1)知:PD=CD=18,即可求解;
(3)设PG=GH=m,则:,求出,利用,即可求解.
【详解】
(1)如图,连接
∵与半圆相切,∴,∴,
在矩形中,,
∵,根据勾股定理,得
在和中,
∴
∴
(2)如图,
当点与点重合时,
过点作与点,则
∵
且,由(1)知:
∴,∴,
∴
当与半圆相切时,由(1)知:,
∴
(3)设半圆与矩形对角线交于点P、H,过点O作OG⊥DF,
则PG=GH,
,则,
设:PG=GH=m,则:,
,
整理得:25m2-640m+1216=0,
解得:,
.
【点睛】
本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键.
19、(1);(2),见解析.
【解析】
(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;
(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.
【详解】
解:(1)∵四只鞋子中右脚鞋有2只,
∴随手拿出一只,恰好是右脚鞋的概率为=,
故答案为:;
(2)画树状图如下:
共有12种等可能的结果,其中两只恰好为一双的情况有4种,
∴拿出两只,恰好为一双的概率为=.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)证明见解析;(2);拓展:
【解析】
(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
拓展:对△ABD的外心位置进行推理,即可得出结论.
【详解】
(1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
∴BD=CE,
∴BC-BD=BC-CE,即BE=CD,
∵∠B=∠C=40°,
∴AB=AC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS);
(2)解:∵∠B=∠C=40°,AB=BE,
∴∠BEA=∠EAB=(180°-40°)=70°,
∵BE=CD,AB=AC,
∴AC=CD,
∴∠ADC=∠DAC=(180°-40°)=70°,
∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
拓展:
解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
∴∠BAD=140°-∠BDA<90°.
∴∠BDA>50°,
又∵∠BDA<90°,
∴50°<∠BDA<90°.
【点睛】
本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.
21、(1)173;(2)点C位于点A的南偏东75°方向.
【解析】
试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.
(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.
试题解析:解:(1)如答图,过点A作AD⊥BC于点D.
由图得,∠ABC=75°﹣10°=60°.
在Rt△ABD中,∵∠ABC=60°,AB=100,
∴BD=50,AD=50.
∴CD=BC﹣BD=200﹣50=1.
在Rt△ACD中,由勾股定理得:
AC=(km).
答:点C与点A的距离约为173km.
(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,
∴AB2+AC2=BC2. ∴∠BAC=90°.
∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.
答:点C位于点A的南偏东75°方向.
考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.
22、(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).
【解析】
(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解
析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;
(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标.
【详解】
解:(1)设反比例函数的解析式为y=,
∵反比例函数的图象经过点A(﹣4,﹣3),
∴k=﹣4×(﹣3)=12,
∴反比例函数的解析式为y=,
∵反比例函数的图象经过点B(2m,y1),C(6m,y2),
∴y1==,y2==,
∵y1﹣y2=4,
∴﹣=4,
∴m=1,
经检验,m=1是原方程的解,
故m的值是1;
(2)设BD与x轴交于点E,
∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,
∴D(2m,),BD=﹣=,
∵三角形PBD的面积是8,
∴BD•PE=8,
∴••PE=8,
∴PE=4m,
∵E(2m,1),点P在x轴上,
∴点P坐标为(﹣2m,1)或(6m,1).
【点睛】
本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.
23、(1)50,360;(2) .
【解析】
试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;
(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.
试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)
由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)
(2)树状图:
由树状图可知共有12种结果,抽到1男1女分别为共8种.
∴
考点:1、扇形统计图,2、条形统计图,3、概率
24、2x-40.
【解析】
原式利用多项式乘以多项式法则计算,去括号合并即可.
【详解】
解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
云南省昭通市昭阳区苏家院乡中学2021-2022学年中考数学模拟预测题含解析: 这是一份云南省昭通市昭阳区苏家院乡中学2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了-10-4的结果是等内容,欢迎下载使用。
上海市嘉定区重点中学2021-2022学年中考数学模拟预测题含解析: 这是一份上海市嘉定区重点中学2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是等内容,欢迎下载使用。
2021-2022学年江西省宜春市重点中学中考数学模拟预测题含解析: 这是一份2021-2022学年江西省宜春市重点中学中考数学模拟预测题含解析,共27页。试卷主要包含了计算-5x2-3x2的结果是,函数的图象上有两点,,若,则等内容,欢迎下载使用。