2021-2022学年吉林省松原市前郭尔罗斯蒙古族自治县中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )
A. B.
C. D.
2.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是( )
A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.众数 B.方差 C.平均数 D.中位数
4.如图是由长方体和圆柱组成的几何体,它的俯视图是( )
A. B. C. D.
5.如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:( )
甲:①作的角平分线;②以为圆心,长为半径画弧,交于点,点即为所求;
乙:①过点作平行于的直线;②过点作平行于的直线,交于点,点即为所求.
A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确
6.如图,点A所表示的数的绝对值是( )
A.3 B.﹣3 C. D.
7.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为( )
A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
8.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )
A.2 B.2 C. D.2
9.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
A.平均数是9 B.中位数是9 C.众数是5 D.极差是5
10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )
A.10 B.14 C.20 D.22
二、填空题(共7小题,每小题3分,满分21分)
11.的算术平方根是_____.
12.如图①,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图②所示,则矩形ABCD的周长为_____.
13.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 .
14.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.
15.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.
16.不等式组的解是________.
17.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.
三、解答题(共7小题,满分69分)
18.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
19.(5分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.
(1)求证:;
(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;
(3)若PE=1,求△PBD的面积.
20.(8分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.
21.(10分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.
22.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
23.(12分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?
24.(14分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名
猕猴桃
芒果
批发价元千克
20
40
零售价元千克
26
50
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
设身高GE=h,CF=l,AF=a,
当x≤a时,
在△OEG和△OFC中,
∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
∴△OEG∽△OFC,
∴,
∵a、h、l都是固定的常数,
∴自变量x的系数是固定值,
∴这个函数图象肯定是一次函数图象,即是直线;
∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.
故选A.
2、C
【解析】
分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
【详解】
解:①a>1时,二次函数图象开口向上,
∵|x1﹣2|>|x2﹣2|,
∴y1>y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
②a<1时,二次函数图象开口向下,
∵|x1﹣2|>|x2﹣2|,
∴y1<y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
综上所述,表达式正确的是a(y1﹣y2)>1.
故选:C.
【点睛】
本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
3、D
【解析】
根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
故本题选:D.
【点睛】
本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.
4、A
【解析】
分析:根据从上边看得到的图形是俯视图,可得答案.
详解:从上边看外面是正方形,里面是没有圆心的圆,
故选A.
点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
5、A
【解析】
根据题意先画出相应的图形,然后进行推理论证即可得出结论.
【详解】
甲的作法如图一:
∵为等边三角形,AD是的角平分线
∴
由甲的作法可知,
在和中,
故甲的作法正确;
乙的作法如图二:
在和中,
故乙的作法正确;
故选:A.
【点睛】
本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.
6、A
【解析】
根据负数的绝对值是其相反数解答即可.
【详解】
|-3|=3,
故选A.
【点睛】
此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.
7、A
【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
【详解】
如图,点P的坐标为(-4,-3).
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
8、B
【解析】
本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.
9、D
【解析】
分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案
平均数为(12+5+9+5+14)÷5=9,故选项A正确;
重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;
5出现了2次,最多,∴众数是5,故选项C正确;
极差为:14﹣5=9,故选项D错误.
故选D
10、B
【解析】
直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,DC=AB=6,
∵AC+BD=16,
∴AO+BO=8,
∴△ABO的周长是:1.
故选B.
【点睛】
平行四边形的性质掌握要熟练,找到等值代换即可求解.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
∵=8,()2=8,
∴的算术平方根是.
故答案为:.
12、1
【解析】
分析:根据点P的移动规律,当OP⊥BC时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长.
详解:∵当OP⊥AB时,OP最小,且此时AP=4,OP=2,
∴AB=2AP=8,AD=2OP=6,
∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.
故答案为1.
点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,OP=2.
13、1.
【解析】
由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
【详解】
∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
∴DE=AC=5,
∴AC=2.
在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得
.
故答案是:1.
14、40
【解析】
首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.
【详解】
解:在Rt△PAB中,∵∠APB=30°,
∴PB=2AB,
由题意BC=2AB,
∴PB=BC,
∴∠C=∠CPB,
∵∠ABP=∠C+∠CPB=60°,
∴∠C=30°,
∴PC=2PA,
∵PA=AB•tan60°,
∴PC=2×20×=40(km),
故答案为40.
【点睛】
本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.
15、
【解析】
根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.
【详解】
∵点A坐标为(3,4),
∴OA==5,
∴cosα=,
故答案为
【点睛】
本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.
16、x>4
【解析】
分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.
【详解】
由①得:x>2;
由②得 :x>4;
∴此不等式组的解集为x>4;
故答案为x>4.
【点睛】
考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
17、3
【解析】
∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),
∵a+c+e=3(b+d+f),∴k=3,
故答案为:3.
三、解答题(共7小题,满分69分)
18、不公平
【解析】
【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
【详解】根据题意列表如下:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
∴P(甲获胜)=,P(乙获胜)=1﹣=,
则该游戏不公平.
【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
19、 (1)见解析;(2) AC∥BD,理由见解析;(3)
【解析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;
(2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;
(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.
【详解】
(1)证明:∵△BCE和△CDP均为等腰直角三角形,
∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,
∴△BCE∽△DCP,
∴;
(2)解:结论:AC∥BD,
理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,
∴∠PCE=∠BCD,
又∵,
∴△PCE∽△DCB,
∴∠CBD=∠CEP=90°,
∵∠ACB=90°,
∴∠ACB=∠CBD,
∴AC∥BD;
(3)解:如图所示:作PM⊥BD于M,
∵AC=4,△ABC和△BEC均为等腰直角三角形,
∴BE=CE=4,
∵△PCE∽△DCB,
∴,即,
∴BD=,
∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,
∴PM=5sin45°=
∴△PBD的面积S=BD•PM=××=.
【点睛】
本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.
20、(1)证明见解析;(2)阴影部分面积为
【解析】
【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;
(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.
【详解】(1)如图,连接OC,
∵OA=OC,
∴∠BAC=∠OCA,
∵∠BCD=∠BAC,
∴∠BCD=∠OCA,
∵AB是直径,
∴∠ACB=90°,
∴∠OCA+OCB=∠BCD+∠OCB=90°
∴∠OCD=90°
∵OC是半径,
∴CD是⊙O的切线
(2)设⊙O的半径为r,
∴AB=2r,
∵∠D=30°,∠OCD=90°,
∴OD=2r,∠COB=60°
∴r+2=2r,
∴r=2,∠AOC=120°
∴BC=2,
∴由勾股定理可知:AC=2,
易求S△AOC=×2×1=
S扇形OAC=,
∴阴影部分面积为.
【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.
21、证明见解析.
【解析】
利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.
【详解】
∵四边形ABCD是平行四边形,∴点O是BD的中点.
又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.
又∵CF=BC,∴OE=CF.
又∵点F在BC的延长线上,∴OE∥CF,
∴四边形OCFE是平行四边形.
【点睛】
本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.
22、(1)证明见解析(2)90°(3)AP=CE
【解析】
(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
【详解】
(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
(3)、AP=CE
理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠DCP,
∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
∵∠CFP=∠EFD(对顶角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等边三角形,∴PC=CE,∴AP=CE
考点:三角形全等的证明
23、官有200人,兵有800人
【解析】
设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设官有x人,兵有y人,
依题意,得:
,
解得: .
答:官有200人,兵有800人.
【点睛】
本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
24、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.
【解析】
设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;
根据利润销售收入成本,即可求出结论.
【详解】
设购进猕猴桃x千克,购进芒果y千克,
根据题意得:,
解得:.
答:购进猕猴桃20千克,购进芒果30千克.
元.
答:如果猕猴桃和芒果全部卖完,他能赚420元钱.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.
2023年吉林省松原市前郭尔罗斯蒙古族自治县南部学区九年级中考一模数学试题(含解析): 这是一份2023年吉林省松原市前郭尔罗斯蒙古族自治县南部学区九年级中考一模数学试题(含解析),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
吉林省长春市吉大尚德校2021-2022学年中考数学适应性模拟试题含解析: 这是一份吉林省长春市吉大尚德校2021-2022学年中考数学适应性模拟试题含解析,共20页。试卷主要包含了关于x的方程=无解,则k的值为等内容,欢迎下载使用。
2022年吉林省松原市前郭尔罗斯蒙古族自治县重点达标名校中考适应性考试数学试题含解析: 这是一份2022年吉林省松原市前郭尔罗斯蒙古族自治县重点达标名校中考适应性考试数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,若二元一次方程组的解为则的值为等内容,欢迎下载使用。