![2021-2022学年广西兴业县重点达标名校中考数学考试模拟冲刺卷含解析第1页](http://m.enxinlong.com/img-preview/2/3/13283068/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年广西兴业县重点达标名校中考数学考试模拟冲刺卷含解析第2页](http://m.enxinlong.com/img-preview/2/3/13283068/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年广西兴业县重点达标名校中考数学考试模拟冲刺卷含解析第3页](http://m.enxinlong.com/img-preview/2/3/13283068/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年广西兴业县重点达标名校中考数学考试模拟冲刺卷含解析
展开
这是一份2021-2022学年广西兴业县重点达标名校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了下列方程有实数根的是,下列命题中,正确的是,点A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=1;④当y=﹣2时,x的值只能取1;⑤当﹣1<x<5时,y<1.其中,正确的有( )A.2个 B.3个 C.4个 D.5个2.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )A. B. C. D.43.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人4.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )A.6 B.6 C.3 D.35.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A. B. C. D.6.下列方程有实数根的是( )A. B.C.x+2x−1=0 D.7.下列命题中,正确的是( )A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线不能相等D.正方形的对角线相等且互相垂直8.如图,在△ABC中,DE∥BC,若,则等于( )A. B. C. D.9.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=( )A.50° B.40° C.30° D.20°10.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是 ( )A.m> B.m>4C.m<4 D.<m<411.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为( ) A.42° B.66° C.69° D.77°12.下列说法中,正确的个数共有( )(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个 B.2个 C.3个 D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 .14.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.15.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.16.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.17.化简:+3=_____.18.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.20.(6分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310…日销售量(n件)198196194?…②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100 (1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.21.(6分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为 .22.(8分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.23.(8分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?24.(10分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形 等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为 端点均为非等距点的对角线长为 (3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.25.(10分)计算:﹣﹣|4sin30°﹣|+(﹣)﹣126.(12分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.27.(12分)如图,在边长为1 个单位长度的小正方形网格中:(1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.
参考答案 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
根据二次函数的性质和图象可以判断题目中各个小题是否成立.【详解】由函数图象可得,
a>1,b<1,即a、b异号,故①错误,
x=-1和x=5时,函数值相等,故②错误,
∵-=2,得4a+b=1,故③正确,
由图象可得,当y=-2时,x=1或x=4,故④错误,
由图象可得,当-1<x<5时,y<1,故⑤正确,
故选A.【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.2、A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故选A.考点: 1.旋转;2.勾股定理.3、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1100万=11000000=1.1×107.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、A【解析】试题分析:根据垂径定理先求BC一半的长,再求BC的长.解:如图所示,设OA与BC相交于D点. ∵AB=OA=OB=6,∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD= 所以BC=2BD=.故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.5、C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x人,物价为y钱,根据题意得故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.6、C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:A.∵x4>0,∴x4+2=0无解;故本选项不符合题意; B.∵≥0,∴=﹣1无解,故本选项不符合题意; C.∵x2+2x﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意; D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意. 故选C.点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、D【解析】
根据菱形,平行四边形,正方形的性质定理判断即可.【详解】A.菱形的对角线不一定相等, A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误; C. 正方形的对角线相等,C错误; D.正方形的对角线相等且互相垂直,D 正确; 故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、C【解析】试题解析::∵DE∥BC,∴,故选C.考点:平行线分线段成比例.9、B【解析】试题解析:延长ED交BC于F, ∵AB∥DE,∴ 在△CDF中, 故 故选B.10、B【解析】
根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,
∴ 解不等式①得,m>1,
解不等式②得,m>所以,不等式组的解集是m>1,
即m的取值范围是m>1.
故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.12、C【解析】
根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13、50°.【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.14、90°或30°.【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.【详解】设顶角为x度,则当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,解得x=90°,当底角为x°+45°时,2(x°+45°)+x°=180°,解得x=30°,∴顶角度数为90°或30°.故答案为:90°或30°.【点睛】本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.15、【解析】
根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.16、1【解析】试题解析:如图,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案为:1.17、【解析】试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.18、【解析】
根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表: 男1男2女1女2男1 (男1,男2)(男1,女1)(男1,女2)男2(男2,男1) (男2,女1)(男2,女2)女1(女1,男1)(女1,男2) (女1,女2)女2(女2,男1)(女2,男2)(女2,女1) 由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为=,故答案为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、见解析【解析】试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;(2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.试题解析:梯形ABCD中,AD∥BC,∴四边形ABED是平行四边形,又AB=AD,∴四边形ABED是菱形;(2)∵四边形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE, ∴△DEC是直角三角形,考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定20、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1.(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=-120x+12000,∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.21、(1)①30°②见解析(2)BD2+CE2=DE2(3)【解析】
(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根据勾股定理得, ,∴DE=DF=,故答案为.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.22、(1)6π;(2)GB=DF,理由详见解析.【解析】
(1)根据弧长公式l= 计算即可;
(2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.【详解】解:(1)∵AD=2,∠DAE=90°,
∴弧DE的长 l1= =π,
同理弧EF的长 l2= =2π,弧FG的长 l3= =3π,
所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.
(2)GB=DF.
理由如下:延长GB交DF于H.
∵CD=CB,∠DCF=∠BCG,CF=CG,
∴△FDC≌△GBC.
∴GB=DF.【点睛】本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.23、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.【解析】
(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,,解得.∴y1=﹣x+1.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.(2)收益W=y1﹣y2,=﹣x+1﹣(x2﹣4x+2)=﹣(x﹣5)2+,∵a=﹣<0,∴当x=5时,W最大值=.故5月出售每千克收益最大,最大为元.【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法24、(1)是;(2)见解析;(3)150°.【解析】
(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.【详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得: 在图3中,由勾股定理得: 故答案为 (3)解:连接BD.如图1所示:∵△ABE与△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中, ,∴△AEC≌△BED(SAS),∴AC=BD,∵四边形ABCD是以A为等距点的等距四边形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中, ∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【点睛】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.25、﹣4﹣1.【解析】
先逐项化简,再合并同类项或同类二次根式即可.【详解】解:原式=﹣3﹣(﹣2)﹣12=﹣3﹣+2﹣12=﹣4﹣1.【点睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.26、解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)= ;解法二(列表法):(以下过程同“解法一”)【解析】
试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)==;解法二(列表法):
0
10
20
30
0
﹣﹣
10
20
30
10
10
﹣﹣
30
40
20
20
30
﹣﹣
50
30
30
40
50
﹣﹣
从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)==;考点:列表法与树状图法.【详解】请在此输入详解!27、(1)见解析 (2)见解析 (3) 9【解析】试题分析:(1)将△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1,如图所示;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,如图所示.试题解析:(1)根据题意画出图形,△A1B1C1为所求三角形;(2)根据题意画出图形,△A2B2C2为所求三角形.考点:1.作图-位似变换,2. 作图-平移变换
相关试卷
这是一份河北保定市博野县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,已知,,且,则的值为,若关于x的一元二次方程x,化简的结果是等内容,欢迎下载使用。
这是一份2022年贵州省遵义地区重点达标名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,将△ABC绕点C,下列代数运算正确的是等内容,欢迎下载使用。
这是一份2022年广西省防城港市重点达标名校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,点,规定,如果将直线l1,下列运算正确的是等内容,欢迎下载使用。