2021-2022学年广东省河源市和平县中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知反比例函数下列结论正确的是( )
A.图像经过点(-1,1) B.图像在第一、三象限
C.y 随着 x 的增大而减小 D.当 x > 1时, y < 1
2.下列运算正确的是( )
A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b2
3.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )
A. B. C. D.
4.如图,不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
5.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为( )
A.64×105 B.6.4×105 C.6.4×106 D.6.4×107
6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有( ).
A.1个 B.2个 C.3个 D.4个
7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A.2 B. C. D.2
8.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有( )
A.3对 B.4对 C.5对 D.6对
9.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )
A. B. C. D.
10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )
A.10° B.20° C.25° D.30°
11.计算(-ab2)3÷(-ab)2的结果是( )
A.ab4 B.-ab4 C.ab3 D.-ab3
12.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.
14.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
15.若一个棱柱有7个面,则它是______棱柱.
16.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.
B.用计算器计算:•tan63°27′≈_____(精确到0.01).
17.= .
18.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,一次函数的图象与反比例函数的图象交于,B 两点.
(1)求一次函数与反比例函数的解析式;
(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.
20.(6分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.
(1)求二次函数的关系式及点C的坐标;
(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;
(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.
21.(6分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.
22.(8分)先化简,再求值:()÷,其中a=+1.
23.(8分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
24.(10分)先化简,再计算: 其中.
25.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
26.(12分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):
请根据所给信息,解答下列问题:
(1)这组数据的中位数是 ,众数是 ;
(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)
(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?
27.(12分)已知PA与⊙O相切于点A,B、C是⊙O上的两点
(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小
(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
分析:直接利用反比例函数的性质进而分析得出答案.
详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;
B.反比例函数y=,图象在第一、三象限,故此选项正确;
C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;
D.反比例函数y=,当x>1时,0<y<1,故此选项错误.
故选B.
点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.
2、D
【解析】
根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;
根据同底数幂相乘,可知a2•a3=a5,故不正确;
根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;
根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.
故选D.
【详解】
请在此输入详解!
3、B
【解析】
观察图形,利用中心对称图形的性质解答即可.
【详解】
选项A,新图形不是中心对称图形,故此选项错误;
选项B,新图形是中心对称图形,故此选项正确;
选项C,新图形不是中心对称图形,故此选项错误;
选项D,新图形不是中心对称图形,故此选项错误;
故选B.
【点睛】
本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.
4、B
【解析】
首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
【详解】
解:解第一个不等式得:x>-1;
解第二个不等式得:x≤1,
在数轴上表示,
故选B.
【点睛】
此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
5、C
【解析】
由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:6400000=6.4×106,
故选C.
点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、C
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.
∴abc<0, ①正确;
2a+b=0,②正确;
由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;
由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;
观察图象得当x=-2时,y<0,
即4a-2b+c<0
∵b=-2a,
∴4a+4a+c<0
即8a+c<0,故⑤正确.
正确的结论有①②⑤,
故选:C
【点睛】
主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
7、C
【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
【详解】
解:∵OP平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE=CP=1,
∴PE=,
∴OP=2PE=2,
∵PD⊥OA,点M是OP的中点,
∴DM=OP=.
故选C.
考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
8、D
【解析】
根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.
【详解】
图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,
△OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.
【点睛】
此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.
9、D
【解析】
本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.
【详解】
要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.
【点睛】
本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.
10、C
【解析】
分析:如图,延长AB交CF于E,
∵∠ACB=90°,∠A=30°,∴∠ABC=60°.
∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.
∵GH∥EF,∴∠2=∠AEC=25°.
故选C.
11、B
【解析】
根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,
(-ab2)3÷(-ab)2
=-a3b6÷a2b2
=-ab4,
故选B.
12、D
【解析】
连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.
【详解】
解:如图,连接OC、OD、BD,
∵点C、D是半圆O的三等分点,
∴,
∴∠AOC=∠COD=∠DOB=60°,
∵OC=OD,
∴△COD是等边三角形,
∴OC=OD=CD,
∵,
∴,
∵OB=OD,
∴△BOD是等边三角形,则∠ODB=60°,
∴∠ODB=∠COD=60°,
∴OC∥BD,
∴,
∴S阴影=S扇形OBD,
S半圆O,
飞镖落在阴影区域的概率,
故选:D.
【点睛】
本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
列举出所有情况,看在第四象限的情况数占总情况数的多少即可.
【详解】
如图:
共有12种情况,在第三象限的情况数有2种,
故不再第三象限的共10种,
不在第三象限的概率为,
故答案为.
【点睛】
本题考查了树状图法的知识,解题的关键是列出树状图求出概率.
14、1.
【解析】
直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
【详解】
如图所示:
∵坡度i=1:0.75,
∴AC:BC=1:0.75=4:3,
∴设AC=4x,则BC=3x,
∴AB==5x,
∵AB=20m,
∴5x=20,
解得:x=4,
故3x=1,
故这个物体在水平方向上前进了1m.
故答案为:1.
【点睛】
此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
15、5
【解析】
分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.
详解:由题意可知:7-2=5.
故答案为5.
点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.
16、20 5.1
【解析】
A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;
B、利用计算器计算可得.
【详解】
A、根据题意,此正多边形的边数为360°÷45°=8,
则这个正多边形对角线的条数一共有=20,
故答案为20;
B、•tan63°27′≈2.646×2.001≈5.1,
故答案为5.1.
【点睛】
本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.
17、2
【解析】
试题分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
∵22=4,∴=2.
考点:算术平方根.
18、
【解析】
解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.
在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣×× =.
故答案为:.
点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);;(2)或;
【解析】
(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.
【详解】
(1) 过点,
,
反比例函数的解析式为;
点在 上,
,
,
一次函数过点,
,
解得:.
一次函数解析式为;
(2)由图可知,当或时,一次函数值大于反比例函数值.
【点睛】
本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.
20、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).
【解析】
(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;
(2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.
(3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.
【详解】
解:(1)令y==0,得:x=4,∴A(4,0).
令x=0,得:y=-2,∴B(0,-2).
∵二次函数y=的图像经过A、B两点,
∴,解得:,
∴二次函数的关系式为y=.
令y==0,解得:x=1或x=4,∴C(1,0).
(2)∵PD∥x轴,PE∥y轴,
∴∠PDE=∠OAB,∠PED=∠OBA,
∴△PDE∽△OAB.∴===2,
∴PD=2PE.设P(m,),
则E(m,).
∴PD+PE=3PE=3×[()-()]==.
∵0<m<4,∴当m=2时,PD+PE有最大值3.
(3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.
∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).
∴=,解得:t=2,
∴圆心O1的坐标为(,-2),∴半径为.
设M(,y).∵MO1=,∴,
解得:y=,∴点M的坐标为().
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.
∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,
∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为 (,0),∴O2D=1,
∴DM==,∴点M的坐标为(,).
综上所述:点M的坐标为(,)或(,).
点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.
21、38+12
【解析】
根据∠ABC=90°,AE=CE,EB=12,求出AC,根据Rt△ABC中,∠CAB=30°,BC=12,求出根据DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案.
【详解】
∵∠ABC=90°,AE=CE,EB=12,
∴EB=AE=CE=12,
∴AC=AE+CE=24,
∵在Rt△ABC中,∠CAB=30°,
∴BC=12,
∵DE⊥AC,AE=CE,
∴AD=DC,
在Rt△ADE中,由勾股定理得
∴DC=13,
∴四边形ABCD的周长=AB+BC+CD+DA=
【点睛】
此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长.
22、,.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
【详解】
解: ()÷
=
=
=
=,
当a=+1时,原式==.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
23、(1)y=(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
【解析】
分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.
详解:(1)如图(1)
∵DF∥AC,
∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°
∵BD=4﹣x,
∴GD=,BG==
y=S△BDG=××=(0≤x≤4);
(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
∵∠ACB=∠DFE=90°,D是AB的中点
∴CD=AB,BF=DE,
∴CD=BD=BF=BE,
∵CF=BD,
∴CD=BD=BF=CF,
∴四边形CDBF是菱形;
∵AC=BC,D是AB的中点.
∴CD⊥AB即∠CDB=90°
∵四边形CDBF为菱形,
∴四边形CDBF是正方形.
点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.
24、;
【解析】
根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可.
【详解】
解:
=
=
=
=
当时,原式=.
【点睛】
此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.
25、 (1)抛物线的解析式为:y=﹣x1+x+1
(1)存在,P1(,2),P1(,),P3(,﹣)
(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
【解析】
试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).
解得:,
∴抛物线的解析式为:y=﹣x1+x+1;
(1)∵y=﹣x1+x+1,
∴y=﹣(x﹣)1+,
∴抛物线的对称轴是x=.
∴OD=.
∵C(0,1),
∴OC=1.
在Rt△OCD中,由勾股定理,得
CD=.
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP1=CP3=CD.
作CH⊥x轴于H,
∴HP1=HD=1,
∴DP1=2.
∴P1(,2),P1(,),P3(,﹣);
(3)当y=0时,0=﹣x1+x+1
∴x1=﹣1,x1=2,
∴B(2,0).
设直线BC的解析式为y=kx+b,由图象,得
,
解得:,
∴直线BC的解析式为:y=﹣x+1.
如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),
∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).
∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),
=﹣a1+2a+(0≤x≤2).
=﹣(a﹣1)1+
∴a=1时,S四边形CDBF的面积最大=,
∴E(1,1).
考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值
26、 (1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次
【解析】
(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;
(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;
(3)利用加权平均数公式求得违章的平均次数,从而求解.
【详解】
解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,
∴中位数为=7,众数是7和8,
故答案为:7、7和8;
(2)补全图形如下:
(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为=7(次),
∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
27、(1)∠P=50°;(2)∠P=45°.
【解析】
(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;
(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.
【详解】
解:(1)如图①,连接OB.
∵PA、PB与⊙O相切于A、B点,
∴PA=PB,
∴∠PAO=∠PBO=90°
∴∠PAB=∠PBA,
∵∠BAC=25°,
∴∠PBA=∠PAB=90°一∠BAC=65°
∴∠P=180°-∠PAB-∠PBA=50°;
(2)如图②,连接AB、AD,
∵∠ACB=90°,
∴AB是的直径,∠ADB=90·
∵PD=DB,
∴PA=AB.
∵PA与⊙O相切于A点
∴AB⊥PA,
∴∠P=∠ABP=45°.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.
2022-2023学年广东省河源市和平县八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年广东省河源市和平县八年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年广东省河源市和平县八年级(下)期末数学试卷(Word解析版): 这是一份2021-2022学年广东省河源市和平县八年级(下)期末数学试卷(Word解析版),共17页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022届广东省和平县市级名校十校联考最后数学试题含解析: 这是一份2022届广东省和平县市级名校十校联考最后数学试题含解析,共17页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。