2021-2022学年大石桥市水源二中重点中学中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.6 B.6 C.3 D.3
2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )
A.8×1012 B.8×1013 C.8×1014 D.0.8×1013
3.下列汽车标志中,不是轴对称图形的是( )
A. B. C. D.
4.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )
A. B. C. D.
5.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是
A. B. C. D.
6.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是( )
年龄
13
14
15
25
28
30
35
其他
人数
30
533
17
12
20
9
2
3
A.平均数 B.众数 C.方差 D.标准差
7.若关于的一元二次方程有两个不相等的实数根,则一次函数
的图象可能是:
A. B. C. D.
8.下列算式的运算结果正确的是( )
A.m3•m2=m6 B.m5÷m3=m2(m≠0)
C.(m﹣2)3=m﹣5 D.m4﹣m2=m2
9.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )
A. B. C. D.
10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.
12.已知是二元一次方程组的解,则m+3n的立方根为__.
13.一个多项式与的积为,那么这个多项式为 .
14.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .
15.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.
16.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.
三、解答题(共8题,共72分)
17.(8分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;
(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;
(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?
18.(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.
滑行时间x/s
0
1
2
3
…
滑行距离y/m
0
4
12
24
…
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.
19.(8分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.
(1)直接写出抛物线y=x2的焦点坐标以及直径的长.
(2)求抛物线y=x2-x+的焦点坐标以及直径的长.
(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.
(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.
②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.
20.(8分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,,
21.(8分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
22.(10分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:
(1)小芳和爸爸上山时的速度各是多少?
(2)求出爸爸下山时CD段的函数解析式;
(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?
23.(12分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
(1)求抛物线C1的表达式;
(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.
24.某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.
(1)求y关于x的函数解析式;
(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
试题分析:根据垂径定理先求BC一半的长,再求BC的长.
解:如图所示,设OA与BC相交于D点.
∵AB=OA=OB=6,
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD=
所以BC=2BD=.
故选A.
点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
2、B
【解析】
80万亿用科学记数法表示为8×1.
故选B.
点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
3、C
【解析】
根据轴对称图形的概念求解.
【详解】
A、是轴对称图形,故错误;
B、是轴对称图形,故错误;
C、不是轴对称图形,故正确;
D、是轴对称图形,故错误.
故选C.
【点睛】
本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
4、A
【解析】
圆柱体的底面积为:π×()2,
∴矿石的体积为:π×()2h= .
故答案为.
5、B
【解析】
解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
6、B
【解析】
分析:根据平均数的意义,众数的意义,方差的意义进行选择.
详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.
故选B.
点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
7、B
【解析】
由方程有两个不相等的实数根,
可得,
解得,即异号,
当时,一次函数的图象过一三四象限,
当时,一次函数的图象过一二四象限,故答案选B.
8、B
【解析】
直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.
【详解】
A、m3•m2=m5,故此选项错误;
B、m5÷m3=m2(m≠0),故此选项正确;
C、(m-2)3=m-6,故此选项错误;
D、m4-m2,无法计算,故此选项错误;
故选:B.
【点睛】
此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.
9、C
【解析】
混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.
【详解】
设瓶子的容积即酒精与水的和是1,
则纯酒精之和为:1×+1×=+,
水之和为:+,
∴混合液中的酒精与水的容积之比为:(+)÷(+)=,
故选C.
【点睛】
本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.
10、C
【解析】
试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
【详解】
.故选C.
解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.
考点:相似三角形的性质.
12、3
【解析】
把x与y的值代入方程组求出m与n的值,即可确定出所求.
【详解】
解:把代入方程组得:
相加得:m+3n=27,
则27的立方根为3,
故答案为3
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
13、
【解析】
试题分析:依题意知
=
考点:整式运算
点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。
14、2
【解析】
如图,过A点作AE⊥y轴,垂足为E,
∵点A在双曲线上,∴四边形AEOD的面积为1
∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3
∴四边形ABCD为矩形,则它的面积为3-1=2
15、1
【解析】
根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
【详解】
根据题意,作△EFC,
树高为CD,且∠ECF=90°,ED=3,FD=12,
易得:Rt△EDC∽Rt△DCF,
有,即DC2=ED×FD,
代入数据可得DC2=31,
DC=1,
故答案为1.
16、1
【解析】
由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.
【详解】
∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.
∵AB=4,BC=6,∴AD+CD=1.
∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.
故答案为1.
【点睛】
本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
三、解答题(共8题,共72分)
17、(1)50;4;5;画图见解析;(2)144°;(3)64
【解析】
(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;
(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;
(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.
【详解】
解:(1)∵课外阅读达3小时的共10人,占总人数的20%,
∴=50(人).
∵课外阅读4小时的人数是32%,
∴50×32%=16(人),
∴男生人数=16﹣8=8(人);
∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
∴中位数是4小时,众数是5小时.
补全图形如图所示.
故答案为50,4,5;
(2)∵课外阅读5小时的人数是20人,
∴×360°=144°.
故答案为144°;
(3)∵课外阅读6小时的人数是4人,
∴800×=64(人).
答:九年级一周课外阅读时间为6小时的学生大约有64人.
【点睛】
本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.
18、(1)20s;(2)
【解析】
(1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;
(2)根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:(1)∵该抛物线过点(0,0),
∴设抛物线解析式为y=ax2+bx,
将(1,4)、(2,12)代入,得:
,
解得:,
所以抛物线的解析式为y=2x2+2x,
当y=840时,2x2+2x=840,
解得:x=20(负值舍去),
即他需要20s才能到达终点;
(2)∵y=2x2+2x=2(x+)2﹣,
∴向左平移2个单位,再向下平移5个单位后函数解析式为y=2(x+2+)2﹣﹣5=2(x+)2﹣.
【点睛】
本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.
19、(1)4(1)4(3)(4)①a=±;②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
【解析】
(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;
(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;
(3)根据题意和y=a(x-h)1+k(a≠0)的直径为,可以求得a的值;
(4)①根据题意和抛物线y=ax1+bx+c(a≠0)的焦点矩形的面积为1,可以求得a的值;
②根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.
【详解】
(1)∵抛物线y=x1,
∴此抛物线焦点的横坐标是0,纵坐标是:0+=1,
∴抛物线y=x1的焦点坐标为(0,1),
将y=1代入y=x1,得x1=-1,x1=1,
∴此抛物线的直径是:1-(-1)=4;
(1)∵y=x1-x+=(x-3)1+1,
∴此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,
∴焦点坐标为(3,3),
将y=3代入y=(x-3)1+1,得
3=(x-3)1+1,解得,x1=5,x1=1,
∴此抛物线的直径时5-1=4;
(3)∵焦点A(h,k+),
∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,
∴直径为:h+-(h-)==,
解得,a=±,
即a的值是;
(4)①由(3)得,BC=,
又CD=A'A=.
所以,S=BC•CD=•==1.
解得,a=±;
②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:
B(1,3),C(5,3),E(1,1),D(5,1),
当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,
∴当m=1-或m=5+时,1个公共点;
当1-<m≤1或5≤m<5+时,1个公共点.
由图可知,公共点个数随m的变化关系为
当m<1-时,无公共点;
当m=1-时,1个公共点;
当1-<m≤1时,1个公共点;
当1<m<5时,3个公共点;
当5≤m<5+时,1个公共点;
当m=5+时,1个公共点;
当m>5+时,无公共点;
由上可得,当m=1-或m=5+时,1个公共点;
当1-<m≤1或5≤m<5+时,1个公共点.
【点睛】
考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.
20、14.2米;
【解析】
Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.
【详解】
设米
∵∠C=45°
在中,米,
,
又米,
在中
Tan∠ADB= ,
Tan60°=
解得
答,建筑物的高度为米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.
21、(1)证明见解析;(2)BH=.
【解析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;
(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.
【详解】
(1)连接OC,
∵AB是⊙O的直径,点C是的中点,
∴∠AOC=90°,
∵OA=OB,CD=AC,
∴OC是△ABD是中位线,
∴OC∥BD,
∴∠ABD=∠AOC=90°,
∴AB⊥BD,
∵点B在⊙O上,
∴BD是⊙O的切线;
(2)由(1)知,OC∥BD,
∴△OCE∽△BFE,
∴,
∵OB=2,
∴OC=OB=2,AB=4,,
∴,
∴BF=3,
在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,
∵S△ABF=AB•BF=AF•BH,
∴AB•BF=AF•BH,
∴4×3=5BH,
∴BH=.
【点睛】
此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.
22、(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40);(3)二人互相看不见的时间有7.1分钟.
【解析】
分析:(1)根据速度=路程÷时间可求出小芳上山的速度;根据速度=路程÷时间+小芳的速度可求出爸爸上山的速度;
(2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐标,由点D的横坐标比点E少4可得出点D的坐标,再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;
(3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论.
详解:(1)小芳上山的速度为120÷6=20(m/min),
爸爸上山的速度为120÷(21﹣6)+20=28(m/min).
答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min.
(2)∵(28﹣20)×(24+6﹣21)=72(m),
∴点C的坐标为(30,72);
∵二人返回山下的时间相差4min,44﹣4=40(min),
∴点D的坐标为(40,192).
设爸爸下山时CD段的函数解析式为y=kx+b,
将C(30,72)、D(40,192)代入y=kx+b,
,解得:.
答:爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40).
(3)设DE段的函数解析式为y=mx+n,
将D(40,192)、E(44,0)代入y=mx+n,
,解得:,
∴DE段的函数解析式为y=﹣48x+2112(40≤x≤44).
当y=12x﹣288>120时,34<x≤40;
当y=﹣48x+2112>120时,40≤x<41.1.
41.1﹣34=7.1(min).
答:二人互相看不见的时间有7.1分钟.
点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C、D的坐标,利用待定系数法求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围.
23、(1)y;(2);(3)E(,0).
【解析】
(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;
(2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;
(3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.
【详解】
解:(1)∵抛物线C1的顶点为,
∴可设抛物线C1的表达式为y,
将B(﹣1,0)代入抛物线解析式得:,
∴,
解得:a,
∴抛物线C1的表达式为y,即y.
(2)设抛物线C2的顶点坐标为
∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称
∴抛物线C2的顶点坐标为()
可设抛物线C2的表达式为y
∵抛物线C2开口朝下,且形状不变
∴抛物线C2的表达式为y,即.
(3)如图,作GK⊥x轴于G,DH⊥AB于H.
由题意GK=DH=3,AH=HB=EK=KF,
∵四边形AGFD是矩形,
∴∠AGF=∠GKF=90°,
∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,
∴∠AGK=∠GFK.
∵∠AKG=∠FKG=90°,
∴△AGK∽△GFK,
∴,
∴,
∴AK=6,
,
∴BE=BK﹣EK=3,
∴OE,
∴E(,0).
【点睛】
本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.
24、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.
【解析】
(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;
(2)解不等式求出x的范围,根据一次函数的性质计算即可.
【详解】
解:(1)由题意得,0.6x+0.4×(35﹣x)=y,
整理得,y=0.2x+14(0<x<35);
(2)由题意得,35﹣x≤2x,
解得,x≥,
则x的最小整数为12,
∵k=0.2>0,
∴y随x的增大而增大,
∴当x=12时,y有最小值16.4,
答:该公司至少需要投入资金16.4万元.
【点睛】
本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.
德宏市重点中学2021-2022学年中考数学模试卷含解析: 这是一份德宏市重点中学2021-2022学年中考数学模试卷含解析,共22页。试卷主要包含了的值是,下列命题中错误的有个,若△÷,则“△”可能是等内容,欢迎下载使用。
2022年大石桥市水源二中中考数学对点突破模拟试卷含解析: 这是一份2022年大石桥市水源二中中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022学年辽宁省大石桥市水源镇九一贯制校中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年辽宁省大石桥市水源镇九一贯制校中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列各式正确的是等内容,欢迎下载使用。